IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp822-837.html
   My bibliography  Save this article

A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units

Author

Listed:
  • Patwal, Rituraj Singh
  • Narang, Nitin
  • Garg, Harish

Abstract

With increasing penetration of renewable energy sources, it is necessary to analyze its impact on the allocation of optimal power generation schedule. In this work, the pumped storage hydrothermal (PSHT) system incorporating solar units has been undertaken. The novel integrated heuristic approach named as time varying acceleration coefficient particle swarm optimization with mutation strategies (TVAC-PSO-MS) has been proposed. In this approach, an initial solution has been updated by the TVAC-PSO approach and then local best solutions are updated by using the successive mutation strategies namely Cauchy, Gaussian, and opposition based mutations. The Cauchy mutation strategy is applied to enhance the search capability and the Gaussian, as well as the opposition based mutation strategies are used to improve the exploitation capability of the algorithm. In order to validate the proposed approach, a standard test system of hydrothermal generation scheduling has been undertaken and the results have been compared with other state of art algorithms. Further, the proposed approach has been applied to optimize the cost of the PSHT system incorporating solar units and validate it through statistical test.

Suggested Citation

  • Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:822-837
    DOI: 10.1016/j.energy.2017.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2016. "Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index," Renewable Energy, Elsevier, vol. 99(C), pages 18-34.
    2. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    3. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    4. Petrakopoulou, Fontina & Robinson, Alexander & Loizidou, Maria, 2016. "Simulation and analysis of a stand-alone solar-wind and pumped-storage hydropower plant," Energy, Elsevier, vol. 96(C), pages 676-683.
    5. Pérez-Díaz, Juan I. & Jiménez, Javier, 2016. "Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration," Energy, Elsevier, vol. 109(C), pages 92-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.
    2. Chun-Yao Lee & Guang-Lin Zhuo, 2021. "A Hybrid Whale Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(13), pages 1-19, June.
    3. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    4. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2019. "Multi-objective combined heat and power unit commitment using particle swarm optimization," Energy, Elsevier, vol. 172(C), pages 794-807.
    5. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    6. Muhammad Ahmad Iqbal & Muhammad Salman Fakhar & Noor Ul Ain & Ahsen Tahir & Irfan Ahmad Khan & Ghulam Abbas & Syed Abdul Rahman Kashif, 2023. "A New Fast Deterministic Economic Dispatch Method and Statistical Performance Evaluation for the Cascaded Short-Term Hydrothermal Scheduling Problem," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    7. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    8. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    9. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    10. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    11. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    12. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    13. Yang, Xu & Li, Hongru, 2023. "Multi-sample learning particle swarm optimization with adaptive crossover operation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 246-282.
    14. Daneshvar, Mohammadreza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Asadi, Somayeh, 2020. "Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment," Energy, Elsevier, vol. 193(C).
    15. Yahia, Zakaria & Pradhan, Anup, 2020. "Simultaneous and sequential stochastic optimization approaches for pumped storage plant scheduling with random breakdowns," Energy, Elsevier, vol. 204(C).
    16. Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
    17. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    18. Fazli Wahid & Rozaida Ghazali & Lokman Hakim Ismail & Ali M. Algarwi Aseere, 2023. "An Optimal Neural Network for Hourly and Daily Energy Consumption Prediction in Buildings," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-13, January.
    19. Pavan Kumar Singh & Nitin Singh & Richa Negi, 2021. "Short-Term Wind Power Prediction Using Hybrid Auto Regressive Integrated Moving Average Model and Dynamic Particle Swarm Optimization," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 124-151, April.
    20. Pavan Kumar Singh & Nitin Singh & Richa Negi, 2021. "Short-Term Wind Power Prediction Using Hybrid Auto Regressive Integrated Moving Average Model and Dynamic Particle Swarm Optimization," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 111-138, April.
    21. Kim, H.J. & Kim, M.K., 2023. "A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid," Applied Energy, Elsevier, vol. 332(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    2. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    4. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Basu, M., 2020. "Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources," Renewable Energy, Elsevier, vol. 146(C), pages 530-542.
    6. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    7. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    8. Ruben Zieba Falama & Wojciech Skarka & Serge Yamigno Doka, 2022. "Optimal Design and Comparative Analysis of a PV/Mini-Hydropower and a PV/Battery Used for Electricity and Water Supply," Energies, MDPI, vol. 16(1), pages 1-22, December.
    9. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    10. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    11. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    12. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    13. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    14. Guangyi Wu & Xiangxin Shao & Hong Jiang & Shaoxin Chen & Yibing Zhou & Hongyang Xu, 2020. "Control Strategy of the Pumped Storage Unit to Deal with the Fluctuation of Wind and Photovoltaic Power in Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
    15. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    16. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    18. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    19. Ghandehariun, Samane & Ghandehariun, Amir M. & Bahrami Ziabari, Nima, 2024. "Complementary assessment and design optimization of a hybrid renewable energy system integrated with open-loop pumped hydro energy storage," Renewable Energy, Elsevier, vol. 227(C).
    20. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:822-837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.