IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921013726.html
   My bibliography  Save this article

Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties

Author

Listed:
  • O., Yugeswar Reddy
  • J., Jithendranath
  • Chakraborty, Ajoy Kumar
  • Guerrero, Josep M.

Abstract

With the advent of DC-powered renewable energy sources (RESs), the interest towards DC microgrid (DCmG) networks has gained attention recently. Integrating RESs has opened new challenges in handling the diversified application problems. The present work proposes an optimal operation strategy for droop-controlled islanded DCmGs considering the uncertainties involved in system variables along with the effect of correlation among them. A new point estimation technique, modified Gauss Quadrature based Point Estimate Method (GQ−PEM) is developed in this paper to model the uncertainties in load demand and solar generation. In this regard the mean and standard deviation errors of proposed method for 4-bus and 6-bus systems were minimum compared to the other existing techniques having errors of 0.00010082, 0.057165401 and 3.85333E−06, 0.059906462 respectively. Based on this a stochastic optimal power flow (SOPF) problem is formulated in DCmG environment with diversified objectives. The formulated SOPF problem is solved by new heuristic, dragonfly algorithm (DA), to obtain the optimal droop parameters for the modified 6-bus islanded DCmG test network. The suitable comparisons were made with other well-known heuristics; namely, the Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm (NSGA-II), to validate the proposed approach. In addition to that, the effect of correlations was investigated with suitable NaTaf transformation (NaT) embedded within the proposed GQ−PEM. Various simulations pertaining to optimality and correlations were carried out to assess the robustness involved in the proposed approach.

Suggested Citation

  • O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013726
    DOI: 10.1016/j.apenergy.2021.118090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    2. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    3. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    4. Shargh, S. & Khorshid ghazani, B. & Mohammadi-ivatloo, B. & Seyedi, H. & Abapour, M., 2016. "Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties," Renewable Energy, Elsevier, vol. 94(C), pages 10-21.
    5. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    6. Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
    7. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    8. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    9. Kitson, J. & Williamson, S.J. & Harper, P.W. & McMahon, C.A. & Rosenberg, G. & Tierney, M.J. & Bell, K. & Gautam, B., 2018. "Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities," Energy, Elsevier, vol. 160(C), pages 142-153.
    10. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    11. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    12. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    13. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    14. Yuan, Minghan & Fu, Yang & Mi, Yang & Li, Zhenkun & Wang, Chengshan, 2019. "Hierarchical control of DC microgrid with dynamical load power sharing," Applied Energy, Elsevier, vol. 239(C), pages 1-11.
    15. Aien, Morteza & Rashidinejad, Masoud & Firuz-Abad, Mahmud Fotuhi, 2015. "Probabilistic optimal power flow in correlated hybrid wind-PV power systems: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1437-1446.
    16. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    17. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Washington de Araujo Silva Júnior & Andrea Vasconcelos & Ayrlw Carvalho Arcanjo & Tatiane Costa & Rafaela Nascimento & Alex Pereira & Eduardo Jatobá & José Bione Filho & Elisabete Barreto & Roberto Di, 2023. "Characterization of the Operation of a BESS with a Photovoltaic System as a Regular Source for the Auxiliary Systems of a High-Voltage Substation in Brazil," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Marvin Lema & Wilson Pavon & Leony Ortiz & Ama Baduba Asiedu-Asante & Silvio Simani, 2022. "Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability," Energies, MDPI, vol. 15(15), pages 1-15, July.
    3. Maen Z. Kreishan & Ahmed F. Zobaa, 2022. "Mixed-Integer Distributed Ant Colony Optimization of Dump Load Allocation with Improved Islanded Microgrid Load Flow," Energies, MDPI, vol. 16(1), pages 1-30, December.
    4. Jun Jia & Guangming Zhang & Xiaoxiong Zhou & Mingxiang Zhu & Zhihan Shi & Xiaodong Lv, 2024. "Consideration of Multi-Objective Stochastic Optimization in Inter-Annual Optimization Scheduling of Cascade Hydropower Stations," Energies, MDPI, vol. 17(4), pages 1-18, February.
    5. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    6. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    2. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    3. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    4. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    5. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    6. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    7. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    8. Li, Yahui & Sun, Yuanyuan & Wang, Qingyan & Sun, Kaiqi & Li, Ke-Jun & Zhang, Yan, 2023. "Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    9. Mukhopadhyay, Bineeta & Das, Debapriya, 2021. "Optimal multi-objective expansion planning of a droop-regulated islanded microgrid," Energy, Elsevier, vol. 218(C).
    10. Bouzid, Allal El Moubarek & Chaoui, Hicham & Zerrougui, Mohamed & Ben Elghali, Seifeddine & Benbouzid, Mohamed, 2021. "Robust control based on linear matrix inequalities criterion of single phase distributed electrical energy systems operating in islanded and grid-connected modes," Applied Energy, Elsevier, vol. 292(C).
    11. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).
    13. Armghan, Hammad & Xu, Yinliang & Sun, Hongbin & Ali, Naghmash & Liu, Jiajin, 2024. "Event-triggered multi-time scale control and low carbon operation for electric-hydrogen DC microgrid," Applied Energy, Elsevier, vol. 355(C).
    14. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    15. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    16. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    17. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    19. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    20. Fouad Boutros & Moustapha Doumiati & Jean-Christophe Olivier & Imad Mougharbel & Hadi Kanaan, 2024. "Optimal Placement of Multiple Sources in a Mesh-Type DC Microgrid Using Dijkstra’s Algorithm," Energies, MDPI, vol. 17(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.