IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9261-d995615.html
   My bibliography  Save this article

Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer

Author

Listed:
  • Mohammed A. A. Al-qaness

    (College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China)

  • Ahmed A. Ewees

    (College of Computing and Information Technology, University of Bisha, Bisha 61922, Saudi Arabia
    Department of Computer, Damietta University, Damietta 34517, Egypt)

  • Mohamed Abd Elaziz

    (Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
    Faculty of Computer Science & Engineering, Galala University, Suze 435611, Egypt
    Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
    Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13518, Lebanon)

  • Ahmed H. Samak

    (College of Computing and Information Technology, University of Bisha, Bisha 61922, Saudi Arabia
    Faculty of Science, Menofia University, Shibeen El-Kom 32511, Egypt)

Abstract

It is necessary to study different aspects of renewable energy generation, including wind energy. Wind power is one of the most important green and renewable energy resources. The estimation of wind energy generation is a critical task that has received wide attention in recent years. Different machine learning models have been developed for this task. In this paper, we present an efficient forecasting model using naturally inspired optimization algorithms. We present an optimized dendritic neural regression (DNR) model for wind energy prediction. A new variant of the seagull optimization algorithm (SOA) is developed using the search operators of the Aquila optimizer (AO). The main idea is to apply the operators of the AO as a local search in the traditional SOA, which boosts the SOA’s search capability. The new method, called SOAAO, is employed to train and optimize the DNR parameters. We used four wind speed datasets to assess the performance of the presented time-series prediction model, called DNR-SOAAO, using different performance indicators. We also assessed the quality of the SOAAO with extensive comparisons to the original versions of the SOA and AO, as well as several other optimization methods. The developed model achieved excellent results in the evaluation. For example, the SOAAO achieved high R 2 results of 0.95, 0.96, 0.95, and 0.91 on the four datasets.

Suggested Citation

  • Mohammed A. A. Al-qaness & Ahmed A. Ewees & Mohamed Abd Elaziz & Ahmed H. Samak, 2022. "Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9261-:d:995615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Adel El-Shahat & Mahmoud A. Attia, 2021. "Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method," Energies, MDPI, vol. 14(19), pages 1-19, September.
    2. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    3. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    4. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    5. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    6. Xiaoxiao Qian & Cheng Tang & Yuki Todo & Qiuzhen Lin & Junkai Ji, 2020. "Evolutionary Dendritic Neural Model for Classification Problems," Complexity, Hindawi, vol. 2020, pages 1-13, August.
    7. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    8. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    9. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    10. Jiang, Ping & Yang, Hufang & Heng, Jiani, 2019. "A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting," Applied Energy, Elsevier, vol. 235(C), pages 786-801.
    11. Helong Yu & Shimeng Qiao & Ali Asghar Heidari & Chunguang Bi & Huiling Chen, 2022. "Individual Disturbance and Attraction Repulsion Strategy Enhanced Seagull Optimization for Engineering Design," Mathematics, MDPI, vol. 10(2), pages 1-35, January.
    12. Wang, Yun & Wang, Jianzhou & Wei, Xiang, 2015. "A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China," Energy, Elsevier, vol. 91(C), pages 556-572.
    13. Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
    14. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    15. Xiaohan Huang & Aihua Jiang, 2022. "Wind Power Generation Forecast Based on Multi-Step Informer Network," Energies, MDPI, vol. 15(18), pages 1-17, September.
    16. Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
    17. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    18. Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    2. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    3. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    4. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    5. Wang, Jianzhou & Wang, Shiqi & Yang, Wendong, 2019. "A novel non-linear combination system for short-term wind speed forecast," Renewable Energy, Elsevier, vol. 143(C), pages 1172-1192.
    6. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    7. Jiang, Ping & Wang, Biao & Li, Hongmin & Lu, Haiyan, 2019. "Modeling for chaotic time series based on linear and nonlinear framework: Application to wind speed forecasting," Energy, Elsevier, vol. 173(C), pages 468-482.
    8. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    9. Zhou, Qingguo & Wang, Chen & Zhang, Gaofeng, 2019. "Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems," Applied Energy, Elsevier, vol. 250(C), pages 1559-1580.
    10. Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
    11. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    12. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    13. Xuejun Chen & Ying Wang & Haitao Zhang & Jianzhou Wang, 2024. "A novel hybrid forecasting model with feature selection and deep learning for wind speed research," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1682-1705, August.
    14. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    15. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    16. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    17. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    18. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    20. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9261-:d:995615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.