IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6376-d650384.html
   My bibliography  Save this article

Multiobjective Scheduling of Hybrid Renewable Energy System Using Equilibrium Optimization

Author

Listed:
  • Salil Madhav Dubey

    (Department of Electrical Engineering, Madhav Institute of Technology & Science, Gwalior 474005, India)

  • Hari Mohan Dubey

    (Department of Electrical Engineering, Birsa Institute of Technology, Dhanbad 828123, India)

  • Manjaree Pandit

    (Department of Electrical Engineering, Madhav Institute of Technology & Science, Gwalior 474005, India)

  • Surender Reddy Salkuti

    (Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea)

Abstract

Due to increasing concern over global warming, the penetration of renewable energy in power systems is increasing day by day. Gencos that traditionally focused only on maximizing their profit in the competitive market are now also focusing on operation with the minimum pollution level. The paper proposes a multiobjective model capable of finding a set of trade-off solutions for the joint optimization problem, considering the cost of reserve and curtailment of power from renewable sources. Managing a hybrid power system is a challenging task due to its stochastic nature mixed with the objective function and complex practical constraints associated with it. A novel metaheuristic Equilibrium Optimizer (EO) algorithm incepted in the year 2020 utilizes the concept of control volume and mass balance for finding equilibrium state is proposed here for computing the optimal schedule and impact of renewable energy integration on profit and emission for different optimization objectives. In this paper, EO has shown dominant performance over well-established metaheuristic algorithms such as particle swarm optimizer (PSO) and artificial bee colony (ABC). In addition, EO produces well-distributed Pareto-optimal solutions and the fuzzy min-ranking is used as a decision maker to acquire the best compromise solution.

Suggested Citation

  • Salil Madhav Dubey & Hari Mohan Dubey & Manjaree Pandit & Surender Reddy Salkuti, 2021. "Multiobjective Scheduling of Hybrid Renewable Energy System Using Equilibrium Optimization," Energies, MDPI, vol. 14(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6376-:d:650384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, M., 2014. "Fuel constrained economic emission dispatch using nondominated sorting genetic algorithm-II," Energy, Elsevier, vol. 78(C), pages 649-664.
    2. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    3. Ayusee Swain & Surender Reddy Salkuti & Kaliprasanna Swain, 2021. "An Optimized and Decentralized Energy Provision System for Smart Cities," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Roberto Felipe Andrade Menezes & Guilherme Delgado Soriano & Ronaldo Ribeiro Barbosa de Aquino, 2021. "Locational Marginal Pricing and Daily Operation Scheduling of a Hydro-Thermal-Wind-Photovoltaic Power System Using BESS to Reduce Wind Power Curtailment," Energies, MDPI, vol. 14(5), pages 1-22, March.
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    6. Heejung Park, 2021. "A Stochastic Planning Model for Battery Energy Storage Systems Coupled with Utility-Scale Solar Photovoltaics," Energies, MDPI, vol. 14(5), pages 1-13, February.
    7. Zubo, Rana H.A. & Mokryani, Geev & Abd-Alhameed, Raed, 2018. "Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment," Applied Energy, Elsevier, vol. 220(C), pages 713-722.
    8. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    9. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    2. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.
    3. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    4. Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    5. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    8. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    9. Aruna Kanagaraj & Kumudini Devi Raguru Pandu, 2020. "Investigations of Various Market Models in a Deregulated Power Environment Using ACOPF," Energies, MDPI, vol. 13(9), pages 1-17, May.
    10. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    11. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    12. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    13. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    14. Liang Zhong & Shizhong Zhang & Yidu Zhang & Guang Chen & Yong Liu, 2021. "Joint Acquisition Time Design and Sensor Association for Wireless Sensor Networks in Microgrids," Energies, MDPI, vol. 14(22), pages 1-18, November.
    15. Sangeeta Pant & Anuj Kumar & Mangey Ram, 2017. "Flower pollination algorithm development: a state of art review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1858-1866, November.
    16. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    17. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    18. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    19. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    20. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6376-:d:650384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.