IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p116-d193962.html
   My bibliography  Save this article

Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems

Author

Listed:
  • Anping Lin

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
    Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing, Changsha 410082, China)

  • Wei Sun

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
    Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing, Changsha 410082, China)

Abstract

Particle swarm optimization (PSO) is one of the most popular, nature inspired optimization algorithms. The canonical PSO is easy to implement and converges fast, however, it suffers from premature convergence. The comprehensive learning particle swarm optimization (CLPSO) can achieve high exploration while it converges relatively slowly on unimodal problems. To enhance the exploitation of CLPSO without significantly impairing its exploration, a multi-leader (ML) strategy is combined with CLPSO. In ML strategy, a group of top ranked particles act as the leaders to guide the motion of the whole swarm. Each particle is randomly assigned with an individual leader and the leader is refreshed dynamically during the optimization process. To activate the stagnated particles, an adaptive mutation (AM) strategy is introduced. Combining the ML and the AM strategies with CLPSO simultaneously, the resultant algorithm is referred to as multi-leader comprehensive learning particle swarm optimization with adaptive mutation (ML-CLPSO-AM). To evaluate the performance of ML-CLPSO-AM, the CEC2017 test suite was employed. The test results indicate that ML-CLPSO-AM performs better than ten popular PSO variants and six other types of representative evolutionary algorithms and meta-heuristics. To validate the effectiveness of ML-CLPSO-AM in real-life applications, ML-CLPSO-AM was applied to economic load dispatch (ELD) problems.

Suggested Citation

  • Anping Lin & Wei Sun, 2018. "Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems," Energies, MDPI, vol. 12(1), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:116-:d:193962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Pi-Yun Chen & Kuei-Hsiang Chao & Bo-Jyun Liao, 2018. "Joint Operation between a PSO-Based Global MPP Tracker and a PV Module Array Configuration Strategy under Shaded or Malfunctioning Conditions," Energies, MDPI, vol. 11(8), pages 1-16, August.
    3. Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
    4. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    5. Dong Xu & Luo Yu & Zhiyu Lv & Jiahuang Zhang & Di Fan & Wei Dai, 2018. "Energy Consumption Optimization for the Formation of Multiple Robotic Fishes Using Particle Swarm Optimization," Energies, MDPI, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Caiyang & Cai, Zhennao & Ye, Xiaojia & Wang, Mingjing & Zhao, Xuehua & Liang, Guoxi & Chen, Huiling & Li, Chengye, 2020. "Quantum-like mutation-induced dragonfly-inspired optimization approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 259-289.
    2. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Day, Min-Yuh & Ni, Yensen, 2023. "The profitability of seasonal trading timing: Insights from energy-related markets," Energy Economics, Elsevier, vol. 128(C).
    4. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    5. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    6. Mario Šipoš & Zvonimir Klaić & Emmanuel Karlo Nyarko & Krešimir Fekete, 2021. "Determining the Optimal Location and Number of Voltage Dip Monitoring Devices Using the Binary Bat Algorithm," Energies, MDPI, vol. 14(1), pages 1-13, January.
    7. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    8. Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    10. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    11. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    12. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    13. Faisal Tariq & Salem Alelyani & Ghulam Abbas & Ayman Qahmash & Mohammad Rashid Hussain, 2020. "Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm," Energies, MDPI, vol. 13(23), pages 1-36, November.
    14. Ren, Hao & Li, Jun & Chen, Huiling & Li, ChenYang, 2021. "Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 380-409.
    15. Li, Yiying & Ren, Xiaohang & Taghizadeh-Hesary, Farhad, 2023. "Vulnerability of sustainable markets to fossil energy shocks," Resources Policy, Elsevier, vol. 85(PB).
    16. Mohammadian, M. & Lorestani, A. & Ardehali, M.M., 2018. "Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 161(C), pages 710-724.
    17. Xu Chen & Bin Xu & Wenli Du, 2018. "An Improved Particle Swarm Optimization with Biogeography-Based Learning Strategy for Economic Dispatch Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    18. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.
    19. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    20. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:116-:d:193962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.