IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2378-d778568.html
   My bibliography  Save this article

A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks

Author

Listed:
  • Mahmoud El-Dabah

    (Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo 11651, Egypt)

  • Mohamed A. Ebrahim

    (Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Benha 13511, Egypt)

  • Ragab A. El-Sehiemy

    (Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt)

  • Z. Alaas

    (Department of Electrical Engineering, Faculty of Engineering, Jazan University, Gizan 45142, Saudi Arabia)

  • M. M. Ramadan

    (Faculty of Technology and Education, Helwan University, Helwan 11795, Egypt)

Abstract

This paper is concerned with an imperative operational problem, called the optimal power flow (OPF), which has several technical and economic points of view with respect the environmental concerns. This paper proposes a multiple-objective optimizer NSWOA (non-dominated sorting whale optimization algorithm) for resolving single-objective OPFs, as well as multi-objective frameworks. With a variety of technical and economic power system objectives, the OPF can be formulated. These objectives are treated as single- and multi-objective OPF issues that are deployed with the aid of the proposed NSWOA to solve these OPF formulations. The proposed algorithm modifies the Pareto ranking and analyzes the optimum compromise solution based on the optimal Euclidian distances. This proposed strategy ensures high convergence speed and improves search capabilities. To achieve this study, an IEEE 30-bus (sixth-generation unit system) is investigated, with eight scenarios studied that highlight technical and environmental operational needs. When compared to previous optimization approaches, the suggested NSWOA achieves considerable techno-economic improvements. Additionally, the statical analyses are carried out for 20 separate runs. This analysis proves the high robustness of the proposed NSWOA at low levels of standard deviation.

Suggested Citation

  • Mahmoud El-Dabah & Mohamed A. Ebrahim & Ragab A. El-Sehiemy & Z. Alaas & M. M. Ramadan, 2022. "A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks," Energies, MDPI, vol. 15(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2378-:d:778568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. M. Shaheen & Hany M. Hasanien & Rania A. Turky & Martin Ćalasan & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "OPF of Modern Power Systems Comprising Renewable Energy Sources Using Improved CHGS Optimization Algorithm," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    3. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    2. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
    4. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    5. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    6. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    7. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    8. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    9. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    10. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    11. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    12. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    13. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    14. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    15. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Adel El-Shahat & Mahmoud A. Attia, 2021. "Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method," Energies, MDPI, vol. 14(19), pages 1-19, September.
    16. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    17. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    18. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    19. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    20. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2378-:d:778568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.