IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5207-d619892.html
   My bibliography  Save this article

Review of Wind Turbine Icing Modelling Approaches

Author

Listed:
  • Fahed Martini

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Leidy Tatiana Contreras Montoya

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Adrian Ilinca

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

Abstract

When operating in cold climates, wind turbines are vulnerable to ice accretion. The main impact of icing on wind turbines is the power losses due to geometric deformation of the iced airfoils of the blades. Significant energy losses during the wind farm lifetime must be estimated and mitigated. Finding solutions for icing calls on several areas of knowledge. Modelling and simulation as an alternative to experimental tests are primary techniques used to account for ice accretion because of their low cost and effectiveness. Several studies have been conducted to replicate ice growth on wind turbine blades using Computational Fluid Dynamics (CFD) during the last decade. While inflight icing research is well developed and well documented, wind turbine icing is still in development and has its peculiarities. This paper surveys and discusses the models, approaches and methods used in ice accretion modelling in view of their application in wind energy while summarizing the recent research findings in Surface Roughness modelling and Droplets Trajectory modelling. An An additional section discusses research on the modelling of electro-thermal icing protection systems. This paper aims to guide researchers in wind engineering to the appropriate approaches, references and tools needed to conduct reliable icing modelling for wind turbines.

Suggested Citation

  • Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5207-:d:619892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    2. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    3. Francesco Castellani & Davide Astolfi, 2020. "Editorial on Special Issue “Wind Turbine Power Optimization Technology”," Energies, MDPI, vol. 13(7), pages 1-4, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.
    2. Kiran Siddappaji & Mark Turner, 2022. "Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis," Energies, MDPI, vol. 15(11), pages 1-44, May.
    3. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    4. Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zepeng & Zhang, Long & Carrasco, Joaquin, 2020. "Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method," Renewable Energy, Elsevier, vol. 146(C), pages 99-110.
    2. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    3. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    4. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    5. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    6. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    7. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    8. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    9. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    10. Minh Tri Nguyen & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Application of Electro-Hydraulic Actuator System to Control Continuously Variable Transmission in Wind Energy Converter," Energies, MDPI, vol. 12(13), pages 1-19, June.
    11. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    12. Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
    13. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    15. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    16. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    17. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    18. Luis Lopez & Ingrid Oliveros & Luis Torres & Lacides Ripoll & Jose Soto & Giovanny Salazar & Santiago Cantillo, 2020. "Prediction of Wind Speed Using Hybrid Techniques," Energies, MDPI, vol. 13(23), pages 1-13, November.
    19. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    20. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5207-:d:619892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.