IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3935-d824853.html
   My bibliography  Save this article

Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis

Author

Listed:
  • Kiran Siddappaji

    (Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Mark Turner

    (Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

Several physics-based enhancements are embedded in a low-fidelity general unducted rotor design analysis tool developed, py_BEM, including the local Reynolds number effect, rotational corrections to airfoil polar, stall delay model, high induction factor correction, polar at large angle of attack, exergetic efficiency calculation and momentum-based loss. A wind turbine rotor is analyzed in high fidelity designed from py_BEM using a 3D blade generator. It is a design derived from the NREL Phase VI rotor. Three design variations are analyzed using steady 3D CFD solutions to demonstrate the effect of geometry on aerodynamics. S809 and NACA 2420 airfoil properties are used for calculating the aerodynamic loading. Momentum, vorticity and energy transport are explained in depth and connected to entropy production as a measure of performance loss. KE dissipation downstream of the rotor is shown to be a significant contributor of entropy rise. Wake analysis demonstrates mixing with the free stream flow, which begins after 3 diameters downstream of the rotor and extends to about 25 diameters until the decay is very small. Vorticity dynamics is investigated using a boundary vorticity flux technique to demonstrate the relationship between streamwise vorticity and lift generated in boundary layers. Drag components are accounted as well. It is demonstrated using rothalpy that shaft power is not only torque multiplied by rotational velocity but a viscous power loss term must also be included. A multifidelity analysis of wind turbine aerodynamics is demonstrated by capturing flow physics at several levels.

Suggested Citation

  • Kiran Siddappaji & Mark Turner, 2022. "Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis," Energies, MDPI, vol. 15(11), pages 1-44, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3935-:d:824853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    2. Wei Zhong & Wen Zhong Shen & Tong Guang Wang & Wei Jun Zhu, 2019. "A New Method of Determination of the Angle of Attack on Rotating Wind Turbine Blades," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.
    4. Kyoungsoo Lee & Shrabanti Roy & Ziaul Huque & Raghava Kommalapati & SangEul Han, 2017. "Effect on Torque and Thrust of the Pointed Tip Shape of a Wind Turbine Blade," Energies, MDPI, vol. 10(1), pages 1-20, January.
    5. David Wood, 2021. "Wake Expansion and the Finite Blade Functions for Horizontal-Axis Wind Turbines," Energies, MDPI, vol. 14(22), pages 1-12, November.
    6. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    7. Iván Herráez & Bernhard Stoevesandt & Joachim Peinke, 2014. "Insight into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations," Energies, MDPI, vol. 7(10), pages 1-25, October.
    8. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    9. Muhammad Salman Siddiqui & Muhammad Hamza Khalid & Abdul Waheed Badar & Muhammed Saeed & Taimoor Asim, 2022. "Parametric Analysis Using CFD to Study the Impact of Geometric and Numerical Modeling on the Performance of a Small Scale Horizontal Axis Wind Turbine," Energies, MDPI, vol. 15(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Fazylova & Baurzhan Tultayev & Teodor Iliev & Ivaylo Stoyanov & Ivan Beloev, 2023. "Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine," Energies, MDPI, vol. 16(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    2. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    3. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    4. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    5. Taimoor Asim & Dharminder Singh & M. Salman Siddiqui & Don McGlinchey, 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    7. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
    8. J. G. Schepers & S. J. Schreck, 2019. "Aerodynamic measurements on wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    9. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    10. Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.
    11. Zangiabadi, E. & Masters, I. & Williams, Alison J. & Croft, T.N. & Malki, R. & Edmunds, M. & Mason-Jones, A. & Horsfall, I., 2017. "Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate," Renewable Energy, Elsevier, vol. 101(C), pages 1141-1156.
    12. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    13. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    14. Soheil Radfar & Bijan Kianoush & Meysam Majidi Nezhad & Mehdi Neshat, 2022. "Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    15. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    16. Marco Piano & Peter E. Robins & Alan G. Davies & Simon P. Neill, 2018. "The Influence of Intra-Array Wake Dynamics on Depth-Averaged Kinetic Tidal Turbine Energy Extraction Simulations," Energies, MDPI, vol. 11(10), pages 1-21, October.
    17. Garcia-Novo, Patxi & Inubuse, Masako & Matsuno, Takeshi & Kyozuka, Yusaku & Archer, Philip & Matsuo, Hiroshi & Henzan, Katsuhiro & Sakaguchi, Daisaku, 2024. "Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data," Energy, Elsevier, vol. 299(C).
    18. Angus C. W. Creech & Alistair G. L. Borthwick & David Ingram, 2017. "Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors," Energies, MDPI, vol. 10(5), pages 1-25, May.
    19. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling & Wang, Tongguang, 2020. "Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions," Energy, Elsevier, vol. 208(C).
    20. Matthias Schramm & Hamid Rahimi & Bernhard Stoevesandt & Kim Tangager, 2017. "The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations," Energies, MDPI, vol. 10(9), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3935-:d:824853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.