IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v288y2021ics0306261921001471.html
   My bibliography  Save this article

Analysis of derating and anti-icing strategies for wind turbines in cold climates

Author

Listed:
  • Stoyanov, D.B.
  • Nixon, J.D.
  • Sarlak, H.

Abstract

Wind turbines located in cold climates suffer from reduced power generation due to ice accretion. This paper presents a novel method for comparing and evaluating two emerging ice mitigation strategies: tip-speed ratio derating and electrothermal anti-icing. The method used takes into account accumulated ice mass, net energy losses both during and after an icing event, and financial breakeven points; it is demonstrated for the assessment of the NREL 5 MW reference wind turbine during different icing events. Our results show how derating can be preferred over electrothermal anti-icing and how this changes for different wind speeds, icing conditions, ambient temperatures, and system costs. For a 1-hour extreme icing event, it is expected that derating will reduce accumulated ice mass and daily power loss by up to 23% and 37%, respectively. Anti-icing was identified to be the preferred strategy when there were 42 in-cloud icing event occurrences per year, ambient temperatures were above −5 °C, and the system cost was no higher than 2% of the turbine’s capital cost. This research demonstrates to wind turbine operators how different strategies can be selected to improve performance during icing conditions.

Suggested Citation

  • Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001471
    DOI: 10.1016/j.apenergy.2021.116610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stoyanov, D.B. & Nixon, J.D., 2020. "Alternative operational strategies for wind turbines in cold climates," Renewable Energy, Elsevier, vol. 145(C), pages 2694-2706.
    2. Villalpando, Fernando & Reggio, Marcelo & Ilinca, Adrian, 2016. "Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software," Energy, Elsevier, vol. 114(C), pages 1041-1052.
    3. Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
    4. Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
    5. Hu, Liangquan & Zhu, Xiaocheng & Hu, Chenxing & Chen, Jinge & Du, Zhaohui, 2017. "Wind turbines ice distribution and load response under icing conditions," Renewable Energy, Elsevier, vol. 113(C), pages 608-619.
    6. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    7. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Guo, Jinghui & Ge, Kun & Wang, Jiaqi & He, Xi & Wen, Dongsheng, 2023. "2D Numerical investigation of surface wettability induced liquid water flow on the surface of the NACA0012 airfoil," Renewable Energy, Elsevier, vol. 205(C), pages 326-339.
    2. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    3. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    2. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    3. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    4. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    5. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.
    7. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    8. Sudhakar Gantasala & Narges Tabatabaei & Michel Cervantes & Jan-Olov Aidanpää, 2019. "Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades," Energies, MDPI, vol. 12(12), pages 1-24, June.
    9. Guo, Wenfeng & Shen, He & Li, Yan & Feng, Fang & Tagawa, Kotaro, 2021. "Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 116-132.
    10. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Guo, Jinghui & Ge, Kun & Wang, Jiaqi & He, Xi & Wen, Dongsheng, 2023. "2D Numerical investigation of surface wettability induced liquid water flow on the surface of the NACA0012 airfoil," Renewable Energy, Elsevier, vol. 205(C), pages 326-339.
    11. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    12. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    13. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    14. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    16. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Son, Chankyu & Kelly, Mark & Kim, Taeseong, 2021. "Boundary-layer transition model for icing simulations of rotating wind turbine blades," Renewable Energy, Elsevier, vol. 167(C), pages 172-183.
    18. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    19. Thanh-Cao Le & Tran-Huu-Tin Luu & Huu-Phuong Nguyen & Trung-Hau Nguyen & Duc-Duy Ho & Thanh-Canh Huynh, 2022. "Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives," Energies, MDPI, vol. 15(15), pages 1-31, July.
    20. Rongjia Li & Guangya Zhu & Dalin Zhang, 2020. "Investigation on the Mechanism of Heat Load Reduction for the Thermal Anti-Icing System," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.