IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6284-d452986.html
   My bibliography  Save this article

Prediction of Wind Speed Using Hybrid Techniques

Author

Listed:
  • Luis Lopez

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors are affiliated with the Universidad del Norte.
    These authors contributed equally to this work.)

  • Ingrid Oliveros

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors are affiliated with the Universidad del Norte.
    These authors contributed equally to this work.)

  • Luis Torres

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors are affiliated with the Universidad del Norte.
    These authors contributed equally to this work.)

  • Lacides Ripoll

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors are affiliated with the Universidad del Norte.
    These authors contributed equally to this work.)

  • Jose Soto

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors are affiliated with the Universidad del Norte.
    These authors contributed equally to this work.)

  • Giovanny Salazar

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

  • Santiago Cantillo

    (Electrical and Electronics Department, Universidad del Norte, Km 5 Via Pto Colombia, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

Abstract

This paper presents a methodology to calculate day-ahead wind speed predictions based on historical measurements done by weather stations. The methodology was tested for three locations: Colombia, Ecuador, and Spain. The data is input into the process in two ways: (1) As a single time series containing all measurements, and (2) as twenty-four separate parallel sequences, corresponding to the values of wind speed at each of the 24 h in the day over several months. The methodology relies on the use of three non-parametric techniques: Least-squares support vector machines, empirical mode decomposition, and the wavelet transform. Moreover, the traditional and simple auto-regressive model is applied. The combination of the aforementioned techniques results in nine methods for performing wind prediction. Experiments using a matlab implementation showed that the least-squares support vector machine using data as a single time series outperformed the other combinations, obtaining the least root mean square error (RMSE).

Suggested Citation

  • Luis Lopez & Ingrid Oliveros & Luis Torres & Lacides Ripoll & Jose Soto & Giovanny Salazar & Santiago Cantillo, 2020. "Prediction of Wind Speed Using Hybrid Techniques," Energies, MDPI, vol. 13(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6284-:d:452986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mónica Borunda & Katya Rodríguez-Vázquez & Raul Garduno-Ramirez & Javier de la Cruz-Soto & Javier Antunez-Estrada & Oscar A. Jaramillo, 2020. "Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming," Energies, MDPI, vol. 13(8), pages 1-24, April.
    2. Yulong Bai & Lihong Tang & Manhong Fan & Xiaoyan Ma & Yang Yang, 2020. "Fuzzy First-Order Transition-Rules-Trained Hybrid Forecasting System for Short-Term Wind Speed Forecasts," Energies, MDPI, vol. 13(13), pages 1-21, June.
    3. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    4. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    5. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    6. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    8. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Renewable Energy in Urban Areas: Worldwide Research Trends," Energies, MDPI, vol. 11(3), pages 1-19, March.
    9. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    10. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    11. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    12. Hache, Emmanuel & Palle, Angélique, 2019. "Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis," Energy Policy, Elsevier, vol. 124(C), pages 23-35.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
    14. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo De Blasis & Giovanni Batista Masala & Filippo Petroni, 2021. "A Multivariate High-Order Markov Model for the Income Estimation of a Wind Farm," Energies, MDPI, vol. 14(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    2. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    3. Sizhou Sun & Lisheng Wei & Jie Xu & Zhenni Jin, 2019. "A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN," Energies, MDPI, vol. 12(3), pages 1-24, January.
    4. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    5. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    6. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    7. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    8. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    9. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    10. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    11. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    12. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    13. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    14. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    15. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    16. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    17. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
    18. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    19. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    20. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6284-:d:452986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.