IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8998-d986596.html
   My bibliography  Save this article

A Survey of the Quasi-3D Modeling of Wind Turbine Icing

Author

Listed:
  • Fahed Martini

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Adrian Ilinca

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Patrick Rizk

    (Wind Energy Research Laboratory (WERL), University of Québec at Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Hussein Ibrahim

    (Technological Institute for Industrial Maintenance, Cégep de Sept-Îles, Sept-Îles, QC G4R 5B7, Canada)

  • Mohamad Issa

    (Institut Maritime du Québec à Rimouski, Rimouski, QC G5L 4B4, Canada)

Abstract

Wind turbine icing has been the subject of intensive research over the past two decades, primarily focusing on applying computational fluid dynamics (CFD) to 2D airfoil simulations for parametric analysis. As a result of blades’ airfoils deformation caused by icing, wind turbines experience a considerable decrease in aerodynamic performance resulting in a substantial loss of productivity. Due to the phenomenon’s complexity and high computational costs, a fully 3D simulation of the entire iced-up rotating turbine becomes infeasible, especially when dealing with several scenarios under various operating and weather conditions. The Quasi-3D steady-state simulation is a practical alternative method to assess power loss resulting from ice accretion on wind turbine blades. To some extent, this approach has been employed in several published studies showing a capability to estimate performance degradation throughout the generation of power curves for both clean and iced wind turbines. In this paper, applying the Quasi-3D simulation method on wind turbine icing was subject to a survey and in-depth analysis based on a comprehensive literature review. The review examines the results of the vast majority of recently published studies that have addressed this approach, summarizing the findings and bringing together research in this area to conclude with clear facts and details that enhance research on the estimation of wind turbine annual power production loss due to icing.

Suggested Citation

  • Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8998-:d:986596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    2. Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
    3. Sudhakar Gantasala & Narges Tabatabaei & Michel Cervantes & Jan-Olov Aidanpää, 2019. "Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades," Energies, MDPI, vol. 12(12), pages 1-24, June.
    4. Son, Chankyu & Kelly, Mark & Kim, Taeseong, 2021. "Boundary-layer transition model for icing simulations of rotating wind turbine blades," Renewable Energy, Elsevier, vol. 167(C), pages 172-183.
    5. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Hu, Liangquan & Zhu, Xiaocheng & Hu, Chenxing & Chen, Jinge & Du, Zhaohui, 2017. "Wind turbines ice distribution and load response under icing conditions," Renewable Energy, Elsevier, vol. 113(C), pages 608-619.
    7. Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Li, Weihao & Wang, Qiao & Lai, Qingren, 2020. "Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model," Renewable Energy, Elsevier, vol. 162(C), pages 1854-1873.
    8. Villalpando, Fernando & Reggio, Marcelo & Ilinca, Adrian, 2016. "Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software," Energy, Elsevier, vol. 114(C), pages 1041-1052.
    9. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    10. Francesco Castellani & Davide Astolfi, 2020. "Editorial on Special Issue “Wind Turbine Power Optimization Technology”," Energies, MDPI, vol. 13(7), pages 1-4, April.
    11. Sudhakar Gantasala & Jean-Claude Luneno & Jan-Olov Aidanpää, 2016. "Influence of Icing on the Modal Behavior of Wind Turbine Blades," Energies, MDPI, vol. 9(11), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    3. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    4. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    5. Sudhakar Gantasala & Narges Tabatabaei & Michel Cervantes & Jan-Olov Aidanpää, 2019. "Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades," Energies, MDPI, vol. 12(12), pages 1-24, June.
    6. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
    7. Guo, Wenfeng & Shen, He & Li, Yan & Feng, Fang & Tagawa, Kotaro, 2021. "Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 116-132.
    8. Yanpeng Hao & Zhaohong Yao & Junke Wang & Hao Li & Ruihai Li & Lin Yang & Wei Liang, 2019. "A Classification Method for Transmission Line Icing Process Curve Based on Hierarchical K-Means Clustering," Energies, MDPI, vol. 12(24), pages 1-14, December.
    9. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    10. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    12. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    13. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    14. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    15. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    16. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    17. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    18. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    19. Wu, Zhenlong, 2019. "Rotor power performance and flow physics in lateral sinusoidal gusts," Energy, Elsevier, vol. 176(C), pages 917-928.
    20. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8998-:d:986596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.