IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1796-d342794.html
   My bibliography  Save this article

Editorial on Special Issue “Wind Turbine Power Optimization Technology”

Author

Listed:
  • Francesco Castellani

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
    These authors contributed equally to this work.)

Abstract

This Special Issue collects innovative contributions in the field of wind turbine optimization technology. The general motivation of the present Special Issue is given by the fact that there has recently been a considerable boost of the quest for wind turbine efficiency optimization in the academia and in the wind energy practitioners communities. The optimization can be focused on technology and operation of single turbine or a group of machines within a wind farm. This perspective is evidently multi-faced and the seven papers composing this Special Issue provide a representative picture of the most ground-breaking state of the art about the subject. Wind turbine power optimization means scientific research about the design of innovative aerodynamic solutions for wind turbine blades and of wind turbine single or collective control, especially for increasing rotor size and exploitation in offshore environment. It should be noticed that some recently developed aerodynamic and control solutions have become available in the industry practice and therefore an interesting line of development is the assessment of the actual impact of optimization technology for wind turbines operating in field: this calls for non-trivial data analysis and statistical methods. The optimization approach must be 360 degrees; for this reason also offshore resource should be addressed with the most up to date technologies such as floating wind turbines, in particular as regards support structures and platforms to be employed in ocean environment. Finally, wind turbine power optimization means as well improving wind farm efficiency through innovative uses of pre-existent control techniques: this is employed, for example, for active control of wake interactions in order to maximize the energy yield and minimize the fatigue loads.

Suggested Citation

  • Francesco Castellani & Davide Astolfi, 2020. "Editorial on Special Issue “Wind Turbine Power Optimization Technology”," Energies, MDPI, vol. 13(7), pages 1-4, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1796-:d:342794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juhun Song & Hee-Chang Lim, 2019. "Study of Floating Wind Turbine with Modified Tension Leg Platform Placed in Regular Waves," Energies, MDPI, vol. 12(4), pages 1-18, February.
    2. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    3. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    4. Yong Ma & Aiming Zhang & Lele Yang & Chao Hu & Yue Bai, 2019. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization," Energies, MDPI, vol. 12(10), pages 1-18, May.
    5. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    6. Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Aitor Saenz-Aguirre & Daniel Teso-Fz-Betoño, 2019. "Parametric Study of a Gurney Flap Implementation in a DU91W(2)250 Airfoil," Energies, MDPI, vol. 12(2), pages 1-14, January.
    7. Lu Ma & Xiaodong Wang & Jian Zhu & Shun Kang, 2019. "Dynamic Stall of a Vertical-Axis Wind Turbine and Its Control Using Plasma Actuation," Energies, MDPI, vol. 12(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.
    2. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    2. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    3. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    5. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    6. Mattia Basso & Carlo Cravero & Davide Marsano, 2021. "Aerodynamic Effect of the Gurney Flap on the Front Wing of a F1 Car and Flow Interactions with Car Components," Energies, MDPI, vol. 14(8), pages 1-15, April.
    7. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    8. Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.
    9. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    10. Alejandro Ballesteros-Coll & Koldo Portal-Porras & Unai Fernandez-Gamiz & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2021. "Rotating Microtab Implementation on a DU91W250 Airfoil Based on the Cell-Set Model," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    11. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    12. Jieyan Chen & Chengxi Li, 2020. "Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether," Energies, MDPI, vol. 13(14), pages 1-26, July.
    13. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    14. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    15. Paweł Ziółkowski & Łukasz Witanowski & Stanisław Głuch & Piotr Klonowicz & Michel Feidt & Aimad Koulali, 2024. "Example of Using Particle Swarm Optimization Algorithm with Nelder–Mead Method for Flow Improvement in Axial Last Stage of Gas–Steam Turbine," Energies, MDPI, vol. 17(12), pages 1-29, June.
    16. Yong-In Kim & Sang-Yeol Lee & Kyoung-Yong Lee & Sang-Ho Yang & Young-Seok Choi, 2020. "Numerical Investigation of Performance and Flow Characteristics of a Tunnel Ventilation Axial Fan with Thickness Profile Treatments of NACA Airfoil," Energies, MDPI, vol. 13(21), pages 1-29, November.
    17. Atsushi Yamaguchi & Iman Yousefi & Takeshi Ishihara, 2020. "Reduction in the Fluctuating Load on Wind Turbines by Using a Combined Nacelle Acceleration Feedback and Lidar-Based Feedforward Control," Energies, MDPI, vol. 13(17), pages 1-18, September.
    18. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    19. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    20. Zhaolin Jia & Han Wu & Hao Chen & Wei Li & Xinyi Li & Jijian Lian & Shuaiqi He & Xiaoxu Zhang & Qixiang Zhao, 2022. "Hydrodynamic Response and Tension Leg Failure Performance Analysis of Floating Offshore Wind Turbine with Inclined Tension Legs," Energies, MDPI, vol. 15(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1796-:d:342794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.