IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp324-340.html
   My bibliography  Save this article

A wind vector simulation model and its application to adequacy assessment

Author

Listed:
  • Miao, Shuwei
  • Yang, Hejun
  • Gu, Yingzhong

Abstract

Modelling wind profile is crucial to the adequacy assessment of wind-integrated generation system. This paper characterizes the wind profile as a wind vector that consists of wind speed and direction. A wind vector simulation model is proposed to produce long-term wind vector samples, whilst maintain the probability distribution of actual wind vector as well as its gusty characteristics. Such model is incorporated into sequential simulation process of wind-integrated generation system, while the wake effect is considered with Jensen model. Then, adequacy assessment procedure considering wake effect is developed. Collected wind vector data from four distinctive sites in North Dakota in US are used to verify the proposed model. The wind-integrated IEEE Reliability Test System (IEEE-RTS) is used to demonstrate the application of the proposed model and the procedure to adequacy assessment. The impacts of wake effect, peak load, and wind turbine type on system adequacy are investigated in detail.

Suggested Citation

  • Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:324-340
    DOI: 10.1016/j.energy.2018.01.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    2. Wang, Longyan & Tan, Andy C.C. & Cholette, Michael E. & Gu, Yuantong, 2017. "Optimization of wind farm layout with complex land divisions," Renewable Energy, Elsevier, vol. 105(C), pages 30-40.
    3. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    4. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    5. Safari, Bonfils, 2011. "Modeling wind speed and wind power distributions in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 925-935, February.
    6. Gualtieri, Giovanni & Secci, Sauro, 2012. "Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison," Renewable Energy, Elsevier, vol. 43(C), pages 183-200.
    7. Miao, Shuwei & Xie, Kaigui & Yang, Hejun & Tai, Heng-Ming & Hu, Bo, 2017. "A Markovian wind farm generation model and its application to adequacy assessment," Renewable Energy, Elsevier, vol. 113(C), pages 1447-1461.
    8. Belu, Radian & Koracin, Darko, 2009. "Wind characteristics and wind energy potential in western Nevada," Renewable Energy, Elsevier, vol. 34(10), pages 2246-2251.
    9. Hou, Peng & Hu, Weihao & Chen, Cong & Soltani, Mohsen & Chen, Zhe, 2016. "Optimization of offshore wind farm layout in restricted zones," Energy, Elsevier, vol. 113(C), pages 487-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Huaizhi & Meng, Anjian & Liu, Yitao & Fu, Xueqian & Cao, Guangzhong, 2019. "Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack," Energy, Elsevier, vol. 188(C).
    2. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    3. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    2. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    3. Ávila, Leandro & Mine, Miriam R.M & Kaviski, Eloy & Detzel, Daniel H.M., 2021. "Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study," Renewable Energy, Elsevier, vol. 167(C), pages 685-699.
    4. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    5. Kapica, Jacek & Pawlak, Halina & Ścibisz, Marek, 2015. "Carbon dioxide emission reduction by heating poultry houses from renewable energy sources in Central Europe," Agricultural Systems, Elsevier, vol. 139(C), pages 238-249.
    6. Bagci, Kubra & Arslan, Talha & Celik, H. Eray, 2021. "Inverted Kumarswamy distribution for modeling the wind speed data: Lake Van, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
    8. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    9. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    10. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    11. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    12. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    15. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    16. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    17. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    18. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    19. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Ekaterina Andriushchenko, 2021. "Comparison of Flux-Switching and Interior Permanent Magnet Synchronous Generators for Direct-Driven Wind Applications Based on Nelder–Mead Optimal Designing," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    20. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:324-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.