IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009479.html
   My bibliography  Save this article

Icing detection and prediction for wind turbines using multivariate sensor data and machine learning

Author

Listed:
  • Ye, Feng
  • Ezzat, Ahmed Aziz

Abstract

Adverse weather events can significantly compromise the availability and economics of a wind farm. This paper focuses on rotor icing detection, which constitutes a major challenge in wind farm operation. When ice accumulates on wind turbine blades, it causes substantial generation losses, operational disruptions, and safety hazards to the personnel, assets, and equipment in a wind farm. Alerts about early signs of rotor icing can assist operators in proactively initiating icing mitigation measures. To this end we propose a machine-learning-based framework that effectively learns the unique signatures of icing events. The framework effectively extracts salient features by condensing the multivariate turbine sensor data into a small-sized subset of information-rich descriptors. Those, along with power-curve-derived features, are used to train a deep-learning-based model that flags icing events and estimates icing probabilities. We also propose a new loss measure, called the icing power loss error (IPLE), that realistically quantifies the expected icing-related power losses. Our experiments show that the proposed framework achieves up to 96.4% accuracy in flagging icing events, while keeping the number of false alarms at minimum. When compared to prevalent data-driven benchmarks, up to 18.7% reduction in power loss estimation error is realized.

Suggested Citation

  • Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009479
    DOI: 10.1016/j.renene.2024.120879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    2. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    3. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    4. Guo, Peng & Infield, David, 2021. "Wind turbine blade icing detection with multi-model collaborative monitoring method," Renewable Energy, Elsevier, vol. 179(C), pages 1098-1105.
    5. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    6. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    7. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    8. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    9. Petros Papadopoulos & David W. Coit & Ahmed Aziz Ezzat, 2024. "STOCHOS: Stochastic opportunistic maintenance scheduling for offshore wind farms," IISE Transactions, Taylor & Francis Journals, vol. 56(1), pages 1-15, January.
    10. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    11. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    13. Kamran Paynabar & Jionghua Jin & Massimo Pacella, 2013. "Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis," IISE Transactions, Taylor & Francis Journals, vol. 45(11), pages 1235-1247.
    14. Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
    15. Golparvar, Behzad & Papadopoulos, Petros & Ezzat, Ahmed Aziz & Wang, Ruo-Qian, 2021. "A surrogate-model-based approach for estimating the first and second-order moments of offshore wind power," Applied Energy, Elsevier, vol. 299(C).
    16. Ye, Feng & Brodie, Joseph & Miles, Travis & Aziz Ezzat, Ahmed, 2024. "AIRU-WRF: A physics-guided spatio-temporal wind forecasting model and its application to the U.S. Mid Atlantic offshore wind energy areas," Renewable Energy, Elsevier, vol. 223(C).
    17. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    18. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    2. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
    3. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    4. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    5. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    6. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    7. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    8. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    9. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    11. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    12. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    13. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    14. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    15. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    16. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    17. Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
    18. Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
    19. Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
    20. Bai, Xinjian & Han, Shuang & Kang, Zijian & Tao, Tao & Pang, Cong & Dai, Shixian & Liu, Yongqian, 2024. "Wind turbine gearbox oil temperature feature extraction and condition monitoring based on energy flow," Applied Energy, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.