IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4933-d612934.html
   My bibliography  Save this article

Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities

Author

Listed:
  • Miguel Campaña

    (Master of Electricity Program, Universidad Politécnica Salesiana, Quito 170525, Ecuador
    Current address: Postgraduate Department, Girón Campus, Av. 12 de Octubre N 23-52, Quito 170525, Ecuador.)

  • Esteban Inga

    (Master of Electricity Program, Universidad Politécnica Salesiana, Quito 170525, Ecuador
    Smart Grid Research Group, Universidad Politécnica Salesiana, Quito 170525, Ecuador)

  • Jorge Cárdenas

    (Inclusive Education Research Group, Universidad Politécnica Salesiana, Quito 170525, Ecuador)

Abstract

Achieving high penetration of electric vehicles (EVs) is one of the objectives proposed by the scientific community to mitigate the negative environmental impact caused by conventional mobility. The limited autonomy and the excessive time to recharge the battery discourage the final consumer from opting for new environmentally friendly mobility alternatives. Consequently, it is essential to provide the urban road network with charging infrastructure (CI) to ensure that the demand generated by EV users is met. The types of terminals to be considered in charging stations (CS) are fast and ultra-fast. The high energy requirements in these types of terminals could stress the electrical systems, reducing the quality of service. To size and forecast the resources needed in CI, it is of great interest to model and predict the maximum number of EVs, in each hour, that each CS will have to serve according to the geographic area in which they are located. Our proposal is not based on an assumed number of vehicles to be served by each CS, but rather it is based on the analysis of vehicular traffic in geo-referenced areas, so that the load managers can design the topology of the CS. The maximum vehicular concentration is determined by some considerations such as the road system, direction of the route, length of the road segment, the intersections, and the economic zone to which it belongs. The topology of the road map is freely extracted from OpenStreetMap to know the latitude and longitude coordinates. Vehicular traffic will be modeled through the topology obtained from OpenStreetMap and other microscopic variables to understand the traffic engineering constraints. In addition, the Hungarian algorithm is used as a minimum cost decision tool to allocate demand to the CS by observing vehicular traffic as a cost variable. The multi commodity flow problem (MCFP) algorithm aims to make commodities flow through the road network with the minimum cost without exceeding the capacities of the road sections. Therefore, it is proposed to solve the transportation problem by directing the vehicular flow to the CS while minimizing the travel time. This situation will contribute significantly to the design of the topology of each CS, which will be studied in future research.

Suggested Citation

  • Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4933-:d:612934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hacardiaux, Thomas & Tancrez, Jean-Sebastien, 2019. "Assessing the Environmental Benefits of Horizontal Cooperation using a Location-Inventory Model," LIDAM Reprints CORE 3088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Bevrani, Bayan & Burdett, Robert & Bhaskar, Ashish & Yarlagadda, Prasad K.D.V., 2020. "A multi-criteria multi-commodity flow model for analysing transportation networks," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    4. Chao Luo & Yih-Fang Huang & Vijay Gupta, 2018. "Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage," Papers 1801.02128, arXiv.org.
    5. Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    6. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    7. Abbas Azadi Moghaddam Arani & Fariborz Jolai & Mohammad Mahdi Nasiri, 2019. "A multi-commodity network flow model for railway capacity optimization in case of line blockage," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 7(4), pages 297-320, October.
    8. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    9. Croce, Antonello Ignazio & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Sustainable mobility and energy resources: A quantitative assessment of transport services with electrical vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Bayan Bevrani & Robert L. Burdett & Ashish Bhaskar & Prasad K. D. V. Yarlagadda, 2020. "A multi commodity flow model incorporating flow reduction functions," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 693-723, September.
    11. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    12. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    13. Shahid Hussain & Mohamed A. Ahmed & Ki-Beom Lee & Young-Chon Kim, 2020. "Fuzzy Logic Weight Based Charging Scheme for Optimal Distribution of Charging Power among Electric Vehicles in a Parking Lot," Energies, MDPI, vol. 13(12), pages 1-27, June.
    14. Milad Akbari & Morris Brenna & Michela Longo, 2018. "Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingkun Song & Udaya K. Madawala & Craig A. Baguley, 2023. "Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    4. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    5. Pokpong Prakobkaew & Somporn Sirisumrannukul, 2022. "Practical Grid-Based Spatial Estimation of Number of Electric Vehicles and Public Chargers for Country-Level Planning with Utilization of GIS Data," Energies, MDPI, vol. 15(11), pages 1-19, May.
    6. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    7. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    8. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    9. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    10. Ajit Kumar Mohanty & Perli Suresh Babu & Surender Reddy Salkuti, 2022. "Optimal Allocation of Fast Charging Station for Integrated Electric-Transportation System Using Multi-Objective Approach," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    11. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    12. Witt Andreas, 2023. "Determination of the Number of Required Charging Stations on a German Motorway Based on Real Traffic Data and Discrete Event-Based Simulation," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    3. Behzad Zargar & Ting Wang & Manuel Pitz & Rainer Bachmann & Moritz Maschmann & Angelina Bintoudi & Lampros Zyglakis & Ferdinanda Ponci & Antonello Monti & Dimosthenis Ioannidis, 2021. "Power Quality Improvement in Distribution Grids via Real-Time Smart Exploitation of Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-26, June.
    4. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    5. Mohammad Hossein Fouladfar & Nagham Saeed & Mousa Marzband & Giuseppe Franchini, 2021. "Home-Microgrid Energy Management Strategy Considering EV’s Participation in DR," Energies, MDPI, vol. 14(18), pages 1-12, September.
    6. Ahmed Abdu Alattab & Reyazur Rashid Irshad & Anwar Ali Yahya & Amin A. Al-Awady, 2022. "Privacy Protected Preservation of Electric Vehicles’ Data in Cloud Computing Using Secure Data Access Control," Energies, MDPI, vol. 15(21), pages 1-13, October.
    7. Shahid Hussain & Subhasis Thakur & Saurabh Shukla & John G. Breslin & Qasim Jan & Faisal Khan & Ibrar Ahmad & Mousa Marzband & Michael G. Madden, 2022. "A Heuristic Charging Cost Optimization Algorithm for Residential Charging of Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-18, February.
    8. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    10. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Kyo Beom Han & Jaesung Jung & Byung O Kang, 2021. "Real-Time Load Variability Control Using Energy Storage System for Demand-Side Management in South Korea," Energies, MDPI, vol. 14(19), pages 1-17, October.
    12. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    13. Eiman ElGhanam & Ibtihal Ahmed & Mohamed Hassan & Ahmed Osman, 2021. "Authentication and Billing for Dynamic Wireless EV Charging in an Internet of Electric Vehicles," Future Internet, MDPI, vol. 13(10), pages 1-19, October.
    14. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    15. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    16. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    17. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    18. Raja S, Charles & Kumar N M, Vijaya & J, Senthil kumar & Nesamalar J, Jeslin Drusila, 2021. "Enhancing system reliability by optimally integrating PHEV charging station and renewable distributed generators: A Bi-Level programming approach," Energy, Elsevier, vol. 229(C).
    19. Yang, Yun & Ma, Changxi & Ling, Gang, 2022. "Pre-location for temporary distribution station of urban emergency materials considering priority under COVID-19: A case study of Wuhan City, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    20. Daniel Y. Mo & H. Y. Lam & Weikun Xu & G. T. S. Ho, 2020. "Design of Flexible Vehicle Scheduling Systems for Sustainable Paratransit Services," Sustainability, MDPI, vol. 12(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4933-:d:612934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.