IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7204-d1265295.html
   My bibliography  Save this article

Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks

Author

Listed:
  • Bingkun Song

    (Department of Electrical, Computer and Software Engineering, Faculty of Engineering, The University of Auckland, Auckland 1023, New Zealand)

  • Udaya K. Madawala

    (Department of Electrical, Computer and Software Engineering, Faculty of Engineering, The University of Auckland, Auckland 1023, New Zealand)

  • Craig A. Baguley

    (Department of Electrical and Electronic Engineering, School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland 1142, New Zealand)

Abstract

A conventional electric vehicle charger (EVC) charges only one EV concurrently. This leads to underutilization whenever the charging power is less than the EVC-rated capacity. Consequently, the cost-effectiveness of conventional EVCs is limited. Reconfigurable EVCs (REVCs) are a new technology that overcomes underutilization by allowing multiple EVs to be charged concurrently. This brings a cost-effective charging solution, especially in large car parks requiring numerous chargers. Therefore, this paper proposes an optimal planning strategy for car parks deploying REVCs. The proposed planning strategy involves three stages. An optimization model is developed for each stage of the proposed planning strategy. The first stage determines the optimal power rating of power modules inside each REVC, and the second stage determines the optimal number and configuration of REVCs, followed by determining the optimal operation plan for EV car parks in the third stage. To demonstrate the effectiveness of the proposed optimal planning strategy, a comprehensive case study is undertaken using realistic car parking scenarios with 400 parking spaces, electricity tariffs, and grid infrastructure costs. Compared to deploying other conventional EVCs, the results convincingly indicate that the proposed optimal planning strategy significantly reduces the total cost of investment and operation while satisfying charging demands.

Suggested Citation

  • Bingkun Song & Udaya K. Madawala & Craig A. Baguley, 2023. "Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks," Energies, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7204-:d:1265295
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Jonas & Noah Daniels & Gretchen Macht, 2023. "Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada," Energies, MDPI, vol. 16(4), pages 1-19, February.
    2. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Prince Aduama & Ameena S. Al-Sumaiti & Khalifa H. Al-Hosani, 2023. "Electric Vehicle Charging Infrastructure and Energy Resources: A Review," Energies, MDPI, vol. 16(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    2. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    3. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    4. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    5. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    6. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto & Jordan Passinato Sausen & Carlos Henrique Barriquello & Alzenira da Rosa Abaide, 2024. "User Behavior in Fast Charging of Electric Vehicles: An Analysis of Parameters and Clustering," Energies, MDPI, vol. 17(19), pages 1-20, September.
    7. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    8. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    9. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    10. Pokpong Prakobkaew & Somporn Sirisumrannukul, 2022. "Practical Grid-Based Spatial Estimation of Number of Electric Vehicles and Public Chargers for Country-Level Planning with Utilization of GIS Data," Energies, MDPI, vol. 15(11), pages 1-19, May.
    11. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    12. Ajit Kumar Mohanty & Perli Suresh Babu & Surender Reddy Salkuti, 2022. "Optimal Allocation of Fast Charging Station for Integrated Electric-Transportation System Using Multi-Objective Approach," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Witt Andreas, 2023. "Determination of the Number of Required Charging Stations on a German Motorway Based on Real Traffic Data and Discrete Event-Based Simulation," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 1-11, January.
    14. Xiuli Wang & Junkai Wei & Fushuan Wen & Kai Wang, 2023. "A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles," Energies, MDPI, vol. 16(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7204-:d:1265295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.