IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.02128.html
   My bibliography  Save this paper

Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage

Author

Listed:
  • Chao Luo
  • Yih-Fang Huang
  • Vijay Gupta

Abstract

This paper studies the problem of stochastic dynamic pricing and energy management policy for electric vehicle (EV) charging service providers. In the presence of renewable energy integration and energy storage system, EV charging service providers must deal with multiple uncertainties --- charging demand volatility, inherent intermittency of renewable energy generation, and wholesale electricity price fluctuation. The motivation behind our work is to offer guidelines for charging service providers to determine proper charging prices and manage electricity to balance the competing objectives of improving profitability, enhancing customer satisfaction, and reducing impact on power grid in spite of these uncertainties. We propose a new metric to assess the impact on power grid without solving complete power flow equations. To protect service providers from severe financial losses, a safeguard of profit is incorporated in the model. Two algorithms --- stochastic dynamic programming (SDP) algorithm and greedy algorithm (benchmark algorithm) --- are applied to derive the pricing and electricity procurement policy. A Pareto front of the multiobjective optimization is derived. Simulation results show that using SDP algorithm can achieve up to 7% profit gain over using greedy algorithm. Additionally, we observe that the charging service provider is able to reshape spatial-temporal charging demands to reduce the impact on power grid via pricing signals.

Suggested Citation

  • Chao Luo & Yih-Fang Huang & Vijay Gupta, 2018. "Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage," Papers 1801.02128, arXiv.org.
  • Handle: RePEc:arx:papers:1801.02128
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.02128
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi, Zonggen & Bauer, Peter H., 2016. "Optimization models for placement of an energy-aware electric vehicle charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 227-244.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    2. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    3. Fox-Penner, Peter & Gorman, Will & Hatch, Jennifer, 2018. "Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & policy observations," Energy Policy, Elsevier, vol. 122(C), pages 203-213.
    4. Liu, Shuohan & Cao, Yue & Ni, Qiang & Xu, Lexi & Zhu, Yongdong & Zhang, Xin, 2023. "Towards reservation-based E-mobility service via hybrid of V2V and G2V charging modes," Energy, Elsevier, vol. 268(C).
    5. Ruisheng Wang & Zhong Chen & Qiang Xing & Ziqi Zhang & Tian Zhang, 2022. "A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    6. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    7. Hui Guo & Dandan Gong & Lijun Zhang & Wenke Mo & Feng Ding & Fei Wang, 2022. "Time-Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing," Energies, MDPI, vol. 15(15), pages 1-18, July.
    8. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.
    9. Rui Ye & Xueliang Huang & Ziqi Zhang & Zhong Chen & Ran Duan, 2018. "A High-Efficiency Charging Service System for Plug-in Electric Vehicles Considering the Capacity Constraint of the Distribution Network," Energies, MDPI, vol. 11(4), pages 1-20, April.
    10. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    11. Leonardo Nogueira Fontoura da Silva & Marcelo Bruno Capeletti & Alzenira da Rosa Abaide & Luciano Lopes Pfitscher, 2024. "A Stochastic Methodology for EV Fast-Charging Load Curve Estimation Considering the Highway Traffic and User Behavior," Energies, MDPI, vol. 17(7), pages 1-27, April.
    12. Santarromana, Rudolph & Mendonça, Joana & Dias, André Martins, 2020. "The effectiveness of decarbonizing the passenger transport sector through monetary incentives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 442-462.
    13. Weihua Wu & Jieyun Wei & Eun-Young Nam & Yifan Zhang & Dongphil Chun, 2024. "Data Drive—Charging Behavior of Electric Vehicle Users with Variable Roles," Sustainability, MDPI, vol. 16(11), pages 1-18, June.
    14. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    16. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    17. Nala Alahmari & Rashid Mehmood & Ahmed Alzahrani & Tan Yigitcanlar & Juan M. Corchado, 2023. "Autonomous and Sustainable Service Economies: Data-Driven Optimization of Design and Operations through Discovery of Multi-Perspective Parameters," Sustainability, MDPI, vol. 15(22), pages 1-44, November.
    18. Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Luo, 2018. "Engineering and Economic Analysis for Electric Vehicle Charging Infrastructure --- Placement, Pricing, and Market Design," Papers 1808.03897, arXiv.org.
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023. "LASSO principal component averaging: A fully automated approach for point forecast pooling," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
    7. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    8. Yajing Gao & Xiaojie Zhou & Jiafeng Ren & Zheng Zhao & Fushen Xue, 2018. "Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game," Energies, MDPI, vol. 11(5), pages 1-19, April.
    9. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    10. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    11. repec:dui:wpaper:1504 is not listed on IDEAS
    12. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    13. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    14. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    15. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    16. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    17. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    18. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    19. Arim Jin & Dahan Lee & Jong-Bae Park & Jae Hyung Roh, 2023. "Day-Ahead Electricity Market Price Forecasting Considering the Components of the Electricity Market Price; Using Demand Decomposition, Fuel Cost, and the Kernel Density Estimation," Energies, MDPI, vol. 16(7), pages 1-19, April.
    20. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    21. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.02128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.