IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3119-d372354.html
   My bibliography  Save this article

Fuzzy Logic Weight Based Charging Scheme for Optimal Distribution of Charging Power among Electric Vehicles in a Parking Lot

Author

Listed:
  • Shahid Hussain

    (Division of Electronic and Information, Department of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea)

  • Mohamed A. Ahmed

    (Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
    Department of Communications and Electronics, Higher Institute of Engineering & Technology–King Marriott, Alexandria 23713, Egypt)

  • Ki-Beom Lee

    (Division of Electronic and Information, Department of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea)

  • Young-Chon Kim

    (Division of Electronic and Information, Department of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea)

Abstract

Electric vehicles (EVs) parking lots are representing significant charging loads for relatively a long period of time. Therefore, the aggregated charging load of EVs may coincide with the peak demand of the distribution power system and can greatly stress the power grid. The stress on the power grid can be characterized by the additional electricity demand and the introduction of a new peak load that may overwhelm both the substations and transmission systems. In order to avoid the stress on the power grid, the parking lot operators are required to limit the penetration level of EVs and optimally distribute the available power among them. This affects the EV owner’s quality of experience (QoE) and thereby reducing the quality of performance (QoP) for the parking lot operators. The QoE is represents the satisfaction level of EV owners; whereas, the QoP is a measurement representing the ratio of EVs with QoE to the total number of EVs. This study proposes a fuzzy logic weight-based charging scheme (FLWCS) to optimally distribute the charging power among the most appropriate EVs in such a way that maximizes the QoP for the parking lot operators under the operational constraints of the power grid. The developed fuzzy inference mechanism resolves the uncertainties and correlates the independent inputs such as state-of-charge, the remaining parking duration and the available power into weighted values for the EVs in each time slot. Once the weight values for all EVs are known, their charging operations are controlled such that the operational constraints of the power grid are respected in each time slot. The proposed FLWCS is applied to a parking lot with different capacities. The simulation results reveal an improved QoP comparing to the conventional first-come-first-served (FCFS) based scheme.

Suggested Citation

  • Shahid Hussain & Mohamed A. Ahmed & Ki-Beom Lee & Young-Chon Kim, 2020. "Fuzzy Logic Weight Based Charging Scheme for Optimal Distribution of Charging Power among Electric Vehicles in a Parking Lot," Energies, MDPI, vol. 13(12), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3119-:d:372354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    2. Muhammad Azmat & Sebastian Kummer, 2020. "Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain," Asian Journal of Sustainability and Social Responsibility, Springer, vol. 5(1), pages 1-22, December.
    3. Perez-Diaz, Alvaro & Gerding, Enrico & McGroarty, Frank, 2018. "Coordination and payment mechanisms for electric vehicle aggregators," Applied Energy, Elsevier, vol. 212(C), pages 185-195.
    4. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    5. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    6. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    7. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    8. Ashish Kumar Karmaker & Md. Alamgir Hossain & Nallapaneni Manoj Kumar & Vishnupriyan Jagadeesan & Arunkumar Jayakumar & Biplob Ray, 2020. "Analysis of Using Biogas Resources for Electric Vehicle Charging in Bangladesh: A Techno-Economic-Environmental Perspective," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    9. Luo, Yugong & Zhu, Tao & Wan, Shuang & Zhang, Shuwei & Li, Keqiang, 2016. "Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems," Energy, Elsevier, vol. 97(C), pages 359-368.
    10. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    11. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    12. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    13. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Lisa Gerlach & Thilo Bocklisch, 2021. "Experts versus Algorithms? Optimized Fuzzy Logic Energy Management of Autonomous PV Hybrid Systems with Battery and H 2 Storage," Energies, MDPI, vol. 14(6), pages 1-28, March.
    3. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    4. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    5. Dominik Husarek & Vjekoslav Salapic & Simon Paulus & Michael Metzger & Stefan Niessen, 2021. "Modeling the Impact of Electric Vehicle Charging Infrastructure on Regional Energy Systems: Fields of Action for an Improved e-Mobility Integration," Energies, MDPI, vol. 14(23), pages 1-27, November.
    6. Shahid Hussain & Subhasis Thakur & Saurabh Shukla & John G. Breslin & Qasim Jan & Faisal Khan & Ibrar Ahmad & Mousa Marzband & Michael G. Madden, 2022. "A Heuristic Charging Cost Optimization Algorithm for Residential Charging of Electric Vehicles," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Behzad Zargar & Ting Wang & Manuel Pitz & Rainer Bachmann & Moritz Maschmann & Angelina Bintoudi & Lampros Zyglakis & Ferdinanda Ponci & Antonello Monti & Dimosthenis Ioannidis, 2021. "Power Quality Improvement in Distribution Grids via Real-Time Smart Exploitation of Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-26, June.
    8. Maximilian Schulz & Kai Hufendiek, 2021. "Discussing the Actual Impact of Optimizing Cost and GHG Emission Minimal Charging of Electric Vehicles in Distributed Energy Systems," Energies, MDPI, vol. 14(3), pages 1-20, February.
    9. Eiman ElGhanam & Ibtihal Ahmed & Mohamed Hassan & Ahmed Osman, 2021. "Authentication and Billing for Dynamic Wireless EV Charging in an Internet of Electric Vehicles," Future Internet, MDPI, vol. 13(10), pages 1-19, October.
    10. Ahmed Abdu Alattab & Reyazur Rashid Irshad & Anwar Ali Yahya & Amin A. Al-Awady, 2022. "Privacy Protected Preservation of Electric Vehicles’ Data in Cloud Computing Using Secure Data Access Control," Energies, MDPI, vol. 15(21), pages 1-13, October.
    11. Kyo Beom Han & Jaesung Jung & Byung O Kang, 2021. "Real-Time Load Variability Control Using Energy Storage System for Demand-Side Management in South Korea," Energies, MDPI, vol. 14(19), pages 1-17, October.
    12. Mohammad Hossein Fouladfar & Nagham Saeed & Mousa Marzband & Giuseppe Franchini, 2021. "Home-Microgrid Energy Management Strategy Considering EV’s Participation in DR," Energies, MDPI, vol. 14(18), pages 1-12, September.
    13. Peter Tauš & Marcela Taušová & Peter Sivák & Mária Shejbalová Muchová & Eva Mihaliková, 2020. "Parameter Optimization Model Photovoltaic Battery System for Charging Electric Cars," Energies, MDPI, vol. 13(17), pages 1-17, September.
    14. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.
    15. Abhinav Tiwari & Hany Farag, 2022. "Analysis and Modeling of Value Creation Opportunities and Governing Factors for Electric Vehicle Proliferation," Energies, MDPI, vol. 16(1), pages 1-26, December.
    16. Marek Krok & Paweł Majewski & Wojciech P. Hunek & Tomasz Feliks, 2022. "Energy Optimization of the Continuous-Time Perfect Control Algorithm," Energies, MDPI, vol. 15(4), pages 1-13, February.
    17. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    18. Charles Lincoln Kenji Yamamura & Harmi Takiya & Cláudia Aparecida Soares Machado & José Carlos Curvelo Santana & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    2. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    4. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    5. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    6. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    7. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    8. Hu, Zechun & Zhan, Kaiqiao & Zhang, Hongcai & Song, Yonghua, 2016. "Pricing mechanisms design for guiding electric vehicle charging to fill load valley," Applied Energy, Elsevier, vol. 178(C), pages 155-163.
    9. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    10. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    11. Rui Ye & Xueliang Huang & Ziqi Zhang & Zhong Chen & Ran Duan, 2018. "A High-Efficiency Charging Service System for Plug-in Electric Vehicles Considering the Capacity Constraint of the Distribution Network," Energies, MDPI, vol. 11(4), pages 1-20, April.
    12. Qiang Xing & Zhong Chen & Ziqi Zhang & Xiao Xu & Tian Zhang & Xueliang Huang & Haiwei Wang, 2020. "Urban Electric Vehicle Fast-Charging Demand Forecasting Model Based on Data-Driven Approach and Human Decision-Making Behavior," Energies, MDPI, vol. 13(6), pages 1-32, March.
    13. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
    14. Mohammadzadeh, Narges & Zegordi, Seyed Hessameddin & Nikbakhsh, Ehsan, 2021. "Pricing and free periodic maintenance service decisions for an electric-and-fuel automotive supply chain using the total cost of ownership," Applied Energy, Elsevier, vol. 288(C).
    15. Li, Mengyu & Lenzen, Manfred & Wang, Dai & Nansai, Keisuke, 2020. "GIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid," Applied Energy, Elsevier, vol. 262(C).
    16. Groenewald, Jakobus & Grandjean, Thomas & Marco, James, 2017. "Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 98-111.
    17. Kaur, Amrit Pal & Singh, Mukesh, 2023. "Time-of-Use tariff rates estimation for optimal demand-side management using electric vehicles," Energy, Elsevier, vol. 273(C).
    18. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    20. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3119-:d:372354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.