IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v350y2019icp105-132.html
   My bibliography  Save this article

Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning

Author

Listed:
  • Ghasemi, Peiman
  • Khalili-Damghani, Kaveh
  • Hafezalkotob, Ashkan
  • Raissi, Sadigh

Abstract

In this paper, an uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation mixed-integer mathematical programing model is proposed for the response phase of the earthquake. The proposed model includes five echelons as affected areas, distribution centers, hospitals, temporary accommodation centers and temporary care centers. Two objective functions as minimizing the total cost of the location-allocation of facilities and minimizing the amount of the shortage of relief supplies, are considered. The uncertainty is modeled using a scenario-based probability approach. The main decisions made by the proposed model are locating of the temporary care and accommodation centers, allocation of the affected areas to the located centers and hospitals, as well as the allocation of the distribution centers to temporary accommodation centers. Several decisions associated with flow of injured people and commodities between facilities, and decisions associated with number of vehicles between facilities and shortage and inventory level at centers are also made by the proposed model. Several sets of constraints including demand and flow of relief commodities, capacity of centers, transportation of injured people, capacity of transportation vehicles for commodities and injured people, and back up centers are considered in multiple periods of planning in the proposed model. The proposed model is applied in a real case study in Tehran. The model is solved using modified multiple-objective particle swarm optimization (MMOPSO), Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and epsilon constraint method. The performance of the solution procedures is analyzed using multi-objective performance evaluation metrics. The results reveal the superiority of the MMOPSO over the other solution approaches. A preferred solution, from the set of non-dominated solutions generated by MMOPSO, has been selected, analyzed and described. Sensitivity analysis on main parameters of proposed model and the probabilities of the earthquake and failures of the facilities has also been accomplished.

Suggested Citation

  • Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
  • Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:105-132
    DOI: 10.1016/j.amc.2018.12.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318311226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    2. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    3. Xie, Siyang & Li, Xiaopeng & Ouyang, Yanfeng, 2015. "Decomposition of general facility disruption correlations via augmentation of virtual supporting stations," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 64-81.
    4. Pérez-Galarce, Francisco & Canales, Linda J. & Vergara, Claudio & Candia-Véjar, Alfredo, 2017. "An optimization model for the location of disaster refuges," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 56-66.
    5. Christian Burkart & Pamela C. Nolz & Walter J. Gutjahr, 2017. "Modelling beneficiaries’ choice in disaster relief logistics," Annals of Operations Research, Springer, vol. 256(1), pages 41-61, September.
    6. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    7. Christophe Duhamel & Andréa Cynthia Santos & Daniel Brasil & Eric Châtelet & Babiga Birregah, 2016. "Connecting a population dynamic model with a multi-period location-allocation problem for post-disaster relief operations," Annals of Operations Research, Springer, vol. 247(2), pages 693-713, December.
    8. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    9. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    10. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    11. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    12. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    13. Jomon Paul & Govind Hariharan, 2012. "Location-allocation planning of stockpiles for effective disaster mitigation," Annals of Operations Research, Springer, vol. 196(1), pages 469-490, July.
    14. Xiang Chu & QiuYan Zhong, 2015. "Post-earthquake allocation approach of medical rescue teams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1809-1824, December.
    15. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    2. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    3. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    4. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    5. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    6. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    7. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    8. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    10. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    12. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    13. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    14. Shuihua Han & Hu Huang & Zongwei Luo & Cyril Foropon, 2019. "Harnessing the power of crowdsourcing and Internet of Things in disaster response," Annals of Operations Research, Springer, vol. 283(1), pages 1175-1190, December.
    15. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    16. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    17. Shiripour, Saber & Mahdavi-Amiri, Nezam, 2019. "Optimal distribution of the injured in a multi-type transportation network with damage-dependent travel times: Two metaheuristic approaches," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    18. Jiaxin Geng & Hanping Hou & Shaoqing Geng, 2021. "Optimization of Warehouse Location and Supplies Allocation for Emergency Rescue under Joint Government–Enterprise Cooperation Considering Disaster Victims’ Distress Perception," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    19. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    20. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:105-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.