IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4734-d608282.html
   My bibliography  Save this article

Generation Data of Synthetic High Frequency Solar Irradiance for Data-Driven Decision-Making in Electrical Distribution Grids

Author

Listed:
  • Mohammad Rayati

    (Institut d’Energie et Systèmes Electriques (IESE), Haute École d’Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Haute École Spécialisée de Suisse Occidentale (HES-SO), 1041 Yverdon-les-Bains, Switzerland)

  • Pasquale De Falco

    (Department of Engineering, University of Naples Parthenope, 80133 Naples, Italy)

  • Daniela Proto

    (Department of Electrical Engineering, Università Federico II of Napoli, 80138 Naples, Italy)

  • Mokhtar Bozorg

    (Institut d’Energie et Systèmes Electriques (IESE), Haute École d’Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Haute École Spécialisée de Suisse Occidentale (HES-SO), 1041 Yverdon-les-Bains, Switzerland)

  • Mauro Carpita

    (Institut d’Energie et Systèmes Electriques (IESE), Haute École d’Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Haute École Spécialisée de Suisse Occidentale (HES-SO), 1041 Yverdon-les-Bains, Switzerland)

Abstract

In this paper, we introduce a model representing the key characteristics of high frequency variations of solar irradiance and photovoltaic (PV) power production based on Clear Sky Index (CSI) data. The model is suitable for data-driven decision-making in electrical distribution grids, e.g., descriptive/predictive analyses, optimization, and numerical simulation. We concentrate on solar irradiance data since the power production of a PV system strongly correlates with solar irradiance at the site location. The solar irradiance is not constant due to the Earth’s orbit and irradiance absorption/scattering from the clouds. To simulate the operation of a PV system with one-minute resolution for a specific coordinate, we have to use a model based on the CSI of the solar irradiance data, capturing the uncertainties caused by cloud movements. The proposed model is based on clustering the days of each year into groups of days, e.g., (i) cloudy, (ii) intermittent cloudy, and (iii) clear sky. The CSI data of each group are divided into bins of magnitudes and the transition probabilities among the bins are identified to deliver a Markov Chain (MC) model to track the intraday weather condition variations. The proposed model is tested on the measurements of two PV systems located at two different climatic regions: (a) Yverdon-les-Bains, Switzerland; and (b) Oahu, Hawaii, USA. The model is compared with a previously published N -state MC model and the performance of the proposed model is elaborated.

Suggested Citation

  • Mohammad Rayati & Pasquale De Falco & Daniela Proto & Mokhtar Bozorg & Mauro Carpita, 2021. "Generation Data of Synthetic High Frequency Solar Irradiance for Data-Driven Decision-Making in Electrical Distribution Grids," Energies, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4734-:d:608282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    2. Bracale, Antonio & Carpinelli, Guido & De Falco, Pasquale, 2017. "A new finite mixture distribution and its expectation-maximization procedure for extreme wind speed characterization," Renewable Energy, Elsevier, vol. 113(C), pages 1366-1377.
    3. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    4. Jain, P.K. & Lungu, E.M., 2002. "Stochastic models for sunshine duration and solar irradiation," Renewable Energy, Elsevier, vol. 27(2), pages 197-209.
    5. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    6. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.
    7. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2011. "Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation," Energy, Elsevier, vol. 36(1), pages 348-359.
    8. Cervone, A. & Carbone, G. & Santini, E. & Teodori, S., 2016. "Optimization of the battery size for PV systems under regulatory rules using a Markov-Chains approach," Renewable Energy, Elsevier, vol. 85(C), pages 657-665.
    9. Le Gal La Salle, Josselin & Badosa, Jordi & David, Mathieu & Pinson, Pierre & Lauret, Philippe, 2020. "Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts," Renewable Energy, Elsevier, vol. 162(C), pages 1321-1339.
    10. Sulaiman, M.Yusof & Hlaing Oo, W.M & Abd Wahab, Mahdi & Zakaria, Azmi, 1999. "Application of beta distribution model to Malaysian sunshine data," Renewable Energy, Elsevier, vol. 18(4), pages 573-579.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    2. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    3. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    4. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    5. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    6. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    7. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    8. Hao Xiao & Wei Pei & Zuomin Dong & Li Kong & Dan Wang, 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks," Energies, MDPI, vol. 11(1), pages 1-29, January.
    9. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    11. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    12. Benseddik, A. & Azzi, A. & Chellali, F. & Khanniche, R. & Allaf, k., 2018. "An analysis of meteorological parameters influencing solar drying systems in Algeria using the isopleth chart technique," Renewable Energy, Elsevier, vol. 122(C), pages 173-183.
    13. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    14. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    15. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    16. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    17. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    18. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    19. Antonio Bracale & Pierluigi Caramia & Guido Carpinelli & Anna Rita Di Fazio & Gabriella Ferruzzi, 2013. "A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control," Energies, MDPI, vol. 6(2), pages 1-15, February.
    20. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4734-:d:608282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.