IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6458-d1234443.html
   My bibliography  Save this article

Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics

Author

Listed:
  • Xinghua Wang

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Fucheng Zhong

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Yilin Xu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Xixian Liu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zezhong Li

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Jianan Liu

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Zhuoli Zhao

    (Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Regarding the generation and integration of typical scenes of PV and loads in urban photovoltaic distribution networks, as well as the insufficient consideration of the spatiotemporal correlation between PV and loads, this paper proposes a typical scene extraction method based on local linear embedding, kernel density estimation, and a joint PV–load typical scene extraction method based on the FP-growth algorithm. Firstly, the daily operation matrices of PV and load are constructed by using the historical operation data of PV and load. Then, the typical scenes are extracted by the dimensionality reduction of local linear embedding and the kernel density estimation method. Finally, the strong association rules of PV–meteorological conditions and load–meteorological conditions are mined based on the FP-growth algorithm, respectively. The association of PV–load typical daily operation scenarios is completed using meteorological conditions as a link. This experiment involved one year of operation data of a distribution network containing PV in Qingyuan, Guangdong Province. The typical scene extraction joint method, Latin hypercube sampling method, and k-means clustering-based scene generation method proposed in this paper are used for comparison, respectively. The results show that compared to the other two scenario generation methods, the error between the typical scenario obtained by this method and the actual operating scenario of the distribution network is smaller. The extracted typical PV and load scenarios can better fit the actual PV and load operation scenarios, which have more reference value for the operation planning of actual distribution networks containing PV.

Suggested Citation

  • Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6458-:d:1234443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    2. Di Hu & Ming Ding & Lei Sun & Jingjing Zhang, 2019. "Planning of High Renewable-Penetrated Distribution Systems Considering Complementarity and Cluster Partitioning," Energies, MDPI, vol. 12(11), pages 1-22, May.
    3. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    4. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    5. Rui Li & Wei Wang & Zhe Chen & Jiuchun Jiang & Weige Zhang, 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches," Energies, MDPI, vol. 10(11), pages 1-27, October.
    6. Mirosław Kornatka & Anna Gawlak, 2021. "An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators," Energies, MDPI, vol. 14(21), pages 1-12, October.
    7. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    8. Nan Yang & Yu Huang & Dengxu Hou & Songkai Liu & Di Ye & Bangtian Dong & Youping Fan, 2019. "Adaptive Nonparametric Kernel Density Estimation Approach for Joint Probability Density Function Modeling of Multiple Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    9. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    10. Yuhong Wang & Xu Zhou & Yunxiang Shi & Zongsheng Zheng & Qi Zeng & Lei Chen & Bo Xiang & Rui Huang, 2021. "Transmission Network Expansion Planning Considering Wind Power and Load Uncertainties Based on Multi-Agent DDQN," Energies, MDPI, vol. 14(19), pages 1-28, September.
    11. Wei Dong & Qiang Yang & Xinli Fang, 2018. "Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques," Energies, MDPI, vol. 11(8), pages 1-19, July.
    12. Mohamed Lotfi & Mohammad Javadi & Gerardo J. Osório & Cláudio Monteiro & João P. S. Catalão, 2020. "A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation," Energies, MDPI, vol. 13(1), pages 1-19, January.
    13. Kyriakos Skarlatos & Eleni S. Bekri & Dimitrios Georgakellos & Polychronis Economou & Sotirios Bersimis, 2023. "Projecting Annual Rainfall Timeseries Using Machine Learning Techniques," Energies, MDPI, vol. 16(3), pages 1-20, February.
    14. Mingyue He & Zahra Soltani & Mojdeh Khorsand & Aaron Dock & Patrick Malaty & Masoud Esmaili, 2022. "Behavior-Aware Aggregation of Distributed Energy Resources for Risk-Aware Operational Scheduling of Distribution Systems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    15. Xiaomei Wu & Chun Sing Lai & Chenchen Bai & Loi Lei Lai & Qi Zhang & Bo Liu, 2020. "Optimal Kernel ELM and Variational Mode Decomposition for Probabilistic PV Power Prediction," Energies, MDPI, vol. 13(14), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    2. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    3. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    4. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    5. Mohamed M. Refaat & Shady H. E. Abdel Aleem & Yousry Atia & Ziad M. Ali & Adel El-Shahat & Mahmoud M. Sayed, 2021. "A Mathematical Approach to Simultaneously Plan Generation and Transmission Expansion Based on Fault Current Limiters and Reliability Constraints," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    6. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    7. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    10. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    11. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    12. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    13. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    14. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    15. Nikolaos Koutsoukis & Pavlos Georgilakis, 2019. "A Chance-Constrained Multistage Planning Method for Active Distribution Networks," Energies, MDPI, vol. 12(21), pages 1-19, October.
    16. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    17. Eleni-Zacharoula Georgiou & Maria Skondra & Marina Charalampopoulou & Panagiotis Felemegkas & Asimina Pachi & Georgia Stafylidou & Dimitrios Papazachariou & Robert Perneczky & Vasileios Thomopoulos & , 2023. "Validation of the test for finding word retrieval deficits (WoFi) in detecting Alzheimer's disease in a naturalistic clinical setting," European Journal of Ageing, Springer, vol. 20(1), pages 1-10, December.
    18. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    19. Temitayo O. Olowu & Aditya Sundararajan & Masood Moghaddami & Arif I. Sarwat, 2018. "Future Challenges and Mitigation Methods for High Photovoltaic Penetration: A Survey," Energies, MDPI, vol. 11(7), pages 1-32, July.
    20. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6458-:d:1234443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.