IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005049.html
   My bibliography  Save this article

Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints

Author

Listed:
  • Botelho, D.F.
  • de Oliveira, L.W.
  • Dias, B.H.
  • Soares, T.A.
  • Moraes, C.A.

Abstract

In recent years, there has been an increase of Renewable Energy Sources (RES) in energy markets that has to lead their agents to become more proactive. In this scenario, a market structure based on Peer-to-Peer (P2P) transactions is very promising but presents challenges for the network operation. A critical challenge is to ensure that network constraints are not violated due to energy trades between peers and neither due to the use of reserve capacity. In this paper, it is proposed a new iterative sequential approach for energy and reserve P2P market that ensures the feasibility of both energy and reserve transactions under network constraints. The methodology considers the interaction between the prosumers and the Distribution System Operator (DSO) in making the final market/operation decision and can be integrated into the existing distribution system. The proposed approach includes the estimation of reserve requirements based on the RES uncertain behavior from historical generation data, which allows identifying RES patterns. The proposed model is assessed through a case study that uses a 14-bus system, under the technical and economic criteria. The results show that the approach can ensure a feasible network operation encompassing energy and reserve markets.

Suggested Citation

  • Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005049
    DOI: 10.1016/j.apenergy.2022.119125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    2. Guerrero, Jaysson & Sok, Bunyim & Chapman, Archie C. & Verbič, Gregor, 2021. "Electrical-distance driven peer-to-peer energy trading in a low-voltage network," Applied Energy, Elsevier, vol. 287(C).
    3. Koichiro Ito & Mar Reguant, 2016. "Sequential Markets, Market Power, and Arbitrage," American Economic Review, American Economic Association, vol. 106(7), pages 1921-1957, July.
    4. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    5. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    6. Vieira, Guilherme & Zhang, Jie, 2021. "Peer-to-peer energy trading in a microgrid leveraged by smart contracts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    8. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    9. Botelho, D.F. & Dias, B.H. & de Oliveira, L.W. & Soares, T.A. & Rezende, I. & Sousa, T., 2021. "Innovative business models as drivers for prosumers integration - Enablers and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Sulaiman, M.Yusof & Hlaing Oo, W.M & Abd Wahab, Mahdi & Zakaria, Azmi, 1999. "Application of beta distribution model to Malaysian sunshine data," Renewable Energy, Elsevier, vol. 18(4), pages 573-579.
    11. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    12. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Ali & Esfahani, Moein & Dinar, Farid & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud & Busvelle, Eric, 2024. "A cooperative transactive multi-carrier energy control mechanism with P2P energy + reserve trading using Nash bargaining game theory under renewables uncertainty," Applied Energy, Elsevier, vol. 353(PB).
    2. Berg, Kjersti & Rana, Rubi & Farahmand, Hossein, 2023. "Quantifying the benefits of shared battery in a DSO-energy community cooperation," Applied Energy, Elsevier, vol. 343(C).
    3. Meng, Yuan & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "A Holistic P2P market for active and reactive energy trading in VPPs considering both financial benefits and network constraints," Applied Energy, Elsevier, vol. 356(C).
    4. Liaqat Ali & M. Imran Azim & Nabin B. Ojha & Jan Peters & Vivek Bhandari & Anand Menon & Vinod Tiwari & Jemma Green & S.M. Muyeen, 2023. "Balancing Usage Profiles and Benefitting End Users through Blockchain Based Local Energy Trading: A German Case Study," Energies, MDPI, vol. 16(17), pages 1-18, August.
    5. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Mohammad-Shafie, Mahdi & Assili, Mohsen & Shivaie, Mojtaba, 2024. "A flexible load-reliant cost-driven framework for peer-to-peer decentralized energy trading of a hydrogen/battery-enabled industrial town in the presence of multiple microgrids," Applied Energy, Elsevier, vol. 373(C).
    7. Wang, Xiaoyu & Jia, Hongjie & Jin, Xiaolong & Mu, Yunfei & Wei, Wei & Yu, Xiaodan & Liang, Shuo, 2024. "Bi-level optimal operations for grid operator and low-carbon building prosumers with peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    4. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    5. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    6. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    7. Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Zade, Michel & Lumpp, Sebastian Dirk & Tzscheutschler, Peter & Wagner, Ulrich, 2022. "Satisfying user preferences in community-based local energy markets — Auction-based clearing approaches," Applied Energy, Elsevier, vol. 306(PA).
    9. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. Gorbatcheva, Anna & Watson, Nicole & Schneiders, Alexandra & Shipworth, David & Fell, Michael J., 2024. "Defining characteristics of peer-to-peer energy trading, transactive energy, and community self-consumption: A review of literature and expert perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    11. Dukovska, Irena & Slootweg, J.G. (Han) & Paterakis, Nikolaos G., 2023. "Introducing user preferences for peer-to-peer electricity trading through stochastic multi-objective optimization," Applied Energy, Elsevier, vol. 338(C).
    12. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    13. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    14. Zare, Amir & Mehdinejad, Mehdi & Abedi, Mehrdad, 2024. "Designing a decentralized peer-to-peer energy market for an active distribution network considering loss and transaction fee allocation, and fairness," Applied Energy, Elsevier, vol. 358(C).
    15. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    16. Neska, Ewa & Kowalska-Pyzalska, Anna, 2022. "Conceptual design of energy market topologies for communities and their practical applications in EU: A comparison of three case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Vinyals, Meritxell, 2021. "Scalable multi-agent local energy trading — Meeting regulatory compliance and validation in the Cardiff grid," Applied Energy, Elsevier, vol. 298(C).
    18. Alexandros-Georgios Chronis & Foivos Palaiogiannis & Iasonas Kouveliotis-Lysikatos & Panos Kotsampopoulos & Nikos Hatziargyriou, 2021. "Photovoltaics Enabling Sustainable Energy Communities: Technological Drivers and Emerging Markets," Energies, MDPI, vol. 14(7), pages 1-21, March.
    19. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    20. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.