IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v131y2017icp200-216.html
   My bibliography  Save this article

Regression methods for improved lifespan modeling of low voltage machine insulation

Author

Listed:
  • Salameh, F.
  • Picot, A.
  • Chabert, M.
  • Maussion, P.

Abstract

This paper deals with the modeling of insulation material lifespan in a partial discharge regime under certain accelerated electrical stresses (voltage, frequency and temperature). An original model, relating the logarithm of the insulation lifespan, the logarithm of the electrical stress and an exponential form of the temperature, is considered. An estimation of the model parameters is performed using three methods: the design of experiments (DoE) method, the response surface method (RSM) and the multiple linear regression (MLR) method. The estimation is obtained on learning sets determined according to each method specification. The performance, in terms of estimation, of each of the three methods is evaluated on a test set composed of additional experiments. For economic reasons and flexibility, the learning and test sets are composed of experiments carried out on twisted pairs of wires covered by an insulator varnish. The ability of the DoE and the RSM methods to organize and to limit the number of experiments is confirmed. The MLR method, however, shows more flexibility with regard to the studied configurations. Thus, it offers an efficient solution when organization is not required or not possible. Moreover, the flexibility of MLR allows specific ranges for the factors to be explored. A local analysis of the estimation performance shows that very short and long lifespans cannot be simultaneously represented by the same model.

Suggested Citation

  • Salameh, F. & Picot, A. & Chabert, M. & Maussion, P., 2017. "Regression methods for improved lifespan modeling of low voltage machine insulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 200-216.
  • Handle: RePEc:eee:matcom:v:131:y:2017:i:c:p:200-216
    DOI: 10.1016/j.matcom.2015.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415002372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 1992. "Sensitivity analysis of simulation experiments: regression analysis and statistical design," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 34(3), pages 297-315.
    2. Li, Yiming & Li, Yih-Lang & Yu, Shao-Ming, 2008. "Design optimization of a current mirror amplifier integrated circuit using a computational statistics technique," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1165-1177.
    3. Mocenni, C. & Madeo, D. & Sparacino, E., 2011. "Linear least squares parameter estimation of nonlinear reaction diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2244-2257.
    4. Freeman, T.Graham, 1985. "Selecting the best model to fit data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 27(2), pages 137-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anguelov, Roumen & Dufourd, Claire & Dumont, Yves, 2017. "Simulations and parameter estimation of a trap-insect model using a finite element approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 47-75.
    2. Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
    3. Rogolino, P. & Cimmelli, V.A., 2020. "Fitting thermal conductivity and optimizing thermoelectric efficiency in SicGe1−c nanowires," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 176(C), pages 279-291.
    4. Graham, Tennille, 2005. "On the Road to Better Management: An investigation into the benefits of managing the impacts of dryland salinity on roads," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137921, Australian Agricultural and Resource Economics Society.
    5. G.B.C. Backus & G.Th. Timmer & A.A. Dijkhuizen & V.R. Eidman & F. Vos, 1995. "A decision support system for strategic planning on pig farms," Agricultural Economics, International Association of Agricultural Economists, vol. 13(2), pages 101-108, November.
    6. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    7. David J. Pannell, 1997. "Sensitivity analysis of normative economic models: theoretical framework and practical strategies," Agricultural Economics, International Association of Agricultural Economists, vol. 16(2), pages 139-152, May.
    8. Priyanka Majumder & Arnab Paul & Pratik Saha & Mrinmoy Majumder & Dayarnab Baidya & Dhritiman Saha, 2023. "Trapezoidal fuzzy BWM-TOPSIS approach and application on water resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2648-2669, March.
    9. Huyet, A.L., 2006. "Optimization and analysis aid via data-mining for simulated production systems," European Journal of Operational Research, Elsevier, vol. 173(3), pages 827-838, September.
    10. Graham, Tennille & White, Benedict & Pannell, David J., 2003. "Efficiency Policies for Salinity Management: Preliminary Research from a Spatial and Dynamic Metamodel," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57879, Australian Agricultural and Resource Economics Society.
    11. Bozağaç, Doruk & Batmaz, İnci & Oğuztüzün, Halit, 2016. "Dynamic simulation metamodeling using MARS: A case of radar simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 69-86.
    12. Tilottama Chakraborty & Mrinmoy Majumder, 2019. "Application of statistical charts, multi-criteria decision making and polynomial neural networks in monitoring energy utilization of wave energy converters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 199-219, February.
    13. Reis dos Santos, M. Isabel & Reis dos Santos, Pedro M., 2016. "Switching regression metamodels in stochastic simulation," European Journal of Operational Research, Elsevier, vol. 251(1), pages 142-147.
    14. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    15. Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
    16. Storlie, Curtis B. & Helton, Jon C., 2008. "Multiple predictor smoothing methods for sensitivity analysis: Description of techniques," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 28-54.
    17. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    18. Soumya Ghosh & Mrinmoy Majumder & Manish Pal, 2018. "Application of metaheuristic algorithm to identify priority parameters for the selection of feasible location having optimum wave energy potential," Energy & Environment, , vol. 29(1), pages 3-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:131:y:2017:i:c:p:200-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.