IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3364-d570963.html
   My bibliography  Save this article

A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles

Author

Listed:
  • Andrey Rogalev

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Nikolay Rogalev

    (Department of Thermal Power Plants, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Vladimir Kindra

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Olga Zlyvko

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Andrey Vegera

    (Department of Innovative Technologies of High-Tech Industries, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

Abstract

The world community is worried about the effects of global warming. A few agreements on the reduction of CO 2 emissions have been signed recently. A large part of these emissions is produced by the power production industry. Soon, the requirements for thermal power plant ecology and efficiency performance may become significantly higher. Thus, the contemporary problem is the development of highly efficient power production facilities with low toxic and greenhouse gas emission. An efficient way to reduce CO 2 emissions into the atmosphere, which implies maintaining economic growth, is the creation of closed thermodynamic cycles with oxy-fuel combustion. The Allam cycle is one of the most promising among oxy-fuel power plants. A 50 MW pilot Allam cycle plant was built in Texas. The design for a commercial system with an electrical output of 300 MW is under development. This work is devoted to the improvement of the efficiency and environmental safety of oxy-fuel combustion power cycles via the utilization of compressed working fluid heat. The results of computer simulation obtained using AspenONE software demonstrated that an additional circuit in the multi-flow regenerator might increase net efficiency by 3.5%. Besides this, the incorporation of a supercritical carbon dioxide (S–CO 2 ) Brayton cycle with recompression increased the efficiency by 0.2%. Therefore, the maximum net efficiency of the prospective power unit was 51.4%.

Suggested Citation

  • Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3364-:d:570963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Yongming & Zhao, Lifeng & Wang, Bo & Zhang, Shijie & Chi, Jinling & Xiao, Yunhan, 2018. "Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle," Applied Energy, Elsevier, vol. 217(C), pages 480-495.
    2. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    3. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    4. van der Ham, L.V. & Kjelstrup, S., 2010. "Exergy analysis of two cryogenic air separation processes," Energy, Elsevier, vol. 35(12), pages 4731-4739.
    5. Mathieu, Philippe, 2004. "Towards the hydrogen era using near-zero CO2 emissions energy systems," Energy, Elsevier, vol. 29(12), pages 1993-2002.
    6. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    7. Hachem Hamadeh & Sannan Y. Toor & Peter L. Douglas & S. Mani Sarathy & Robert W. Dibble & Eric Croiset, 2020. "Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke," Energies, MDPI, vol. 13(13), pages 1-12, July.
    8. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    9. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    10. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    11. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
    2. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Pavel Bryzgunov, 2022. "Review of Closed SCO 2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency," Energies, MDPI, vol. 15(23), pages 1-37, December.
    3. Andrey Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko, 2021. "Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia," Energies, MDPI, vol. 14(21), pages 1-20, November.
    4. Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.
    5. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    6. Vladimir Kindra & Igor Maksimov & Ivan Komarov & Cheng Xu & Tuantuan Xin, 2023. "Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles," Energies, MDPI, vol. 16(9), pages 1-25, May.
    7. Vladimir Kindra & Nikolay Rogalev & Andrey Rogalev & Vladimir Naumov & Ekaterina Sabanova, 2022. "Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin, Tuantuan & Xu, Cheng & Zhang, Yifei & Yu, Liang & Xu, Hongyu & Yang, Yongping, 2024. "Process splitting analysis and thermodynamic optimization of the Allam cycle with turbine cooling and recompression modification," Energy, Elsevier, vol. 286(C).
    2. Dan Fernandes & Song Wang & Qiang Xu & Russel Buss & Daniel Chen, 2019. "Process and Carbon Footprint Analyses of the Allam Cycle Power Plant Integrated with an Air Separation Unit," Clean Technol., MDPI, vol. 1(1), pages 1-16, October.
    3. Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
    4. Xin, Tuantuan & Xu, Cheng & Yang, Yongping & Kindra, Vladimir & Rogalev, Andrey, 2023. "A new process splitting analytical method for the coal-based Allam cycle: Thermodynamic assessment and process integration," Energy, Elsevier, vol. 267(C).
    5. Piadehrouhi, Forough & Ghorbani, Bahram & Miansari, Mehdi & Mehrpooya, Mehdi, 2019. "Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors," Energy, Elsevier, vol. 179(C), pages 938-959.
    6. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    7. Luo, Jing & Emelogu, Ogechi & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Exergy-based investigation of a coal-fired allam cycle," Energy, Elsevier, vol. 218(C).
    8. Xin, Tuantuan & Zhang, Yifei & Li, Xikang & Xu, Hongyu & Xu, Cheng, 2024. "A novel coal-based Allam cycle coupled to CO2 gasification with improved thermodynamic and economic performance," Energy, Elsevier, vol. 293(C).
    9. Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
    10. Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.
    11. Zonouz, Masood Jalali & Mehrpooya, Mehdi, 2017. "Parametric study of a hybrid one column air separation unit (ASU) and CO2 power cycle based on advanced exergy cost analysis results," Energy, Elsevier, vol. 140(P1), pages 261-275.
    12. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    13. Wang, Maojian & Liu, Guilian & Hui, Chi Wai, 2016. "Simultaneous optimization and integration of gas turbine and air separation unit in IGCC plant," Energy, Elsevier, vol. 116(P2), pages 1294-1301.
    14. Ong, Chong Wei & Chen, Cheng-Liang, 2021. "Intensification, optimization and economic evaluations of the CO2-capturing oxy-combustion CO2 power system integrated with the utilization of liquefied natural gas cold energy," Energy, Elsevier, vol. 234(C).
    15. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
    16. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    17. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    18. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    19. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3364-:d:570963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.