IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp505-526.html
   My bibliography  Save this article

Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle

Author

Listed:
  • Scaccabarozzi, Roberto
  • Gatti, Manuele
  • Martelli, Emanuele

Abstract

This paper presents a thorough thermodynamic analysis and optimization of the NET Power cycle (also called Allam cycle), a natural-gas-fired oxy-combustion cycle featuring nearly 100% CO2 capture level, very high net electric efficiency, and potentially near-zero emissions level. The main goals of this study are the systematic optimization of the cycle for the maximum efficiency, and the quantification of the effects of the modelling assumptions and equipment performance on the optimal cycle variables and efficiency. An Aspen Plus flow-sheet featuring accurate first-principle models of the main equipment units (including cooled turbine) and fluid properties (equation of state) has been developed. The influence of the cycle variables on the thermodynamic performance of the cycle is first assessed by means of sensitivity analyses. Then, the cycle variables, which maximize the net electric efficiency, are determined with PGS-COM, a black-box numerical optimization algorithm, linked to the simulation software. The corresponding maximum cycle efficiency is equal to 54.80% (with 100% CO2 capture), confirming the outstanding performance of the NET Power cycle. Moreover, the optimization indicates the existence of promising combinations of the cycle variables which lead to reduced component costs (due to the lower operating pressures and temperatures) of the most critical components, without considerably affecting the net electric efficiency. The analysis also indicates that the cooling medium temperature, the power consumption of the air separation unit, the effectiveness of the regenerator and the effectiveness of the turbine cooling system are the main factors influencing the cycle efficiency.

Suggested Citation

  • Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:505-526
    DOI: 10.1016/j.apenergy.2016.06.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hailong & Jakobsen, Jana P. & Wilhelmsen, Øivind & Yan, Jinyue, 2011. "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models," Applied Energy, Elsevier, vol. 88(11), pages 3567-3579.
    2. Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
    3. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    4. Matthias Finkenrath, 2011. "Cost and Performance of Carbon Dioxide Capture from Power Generation," IEA Energy Papers 2011/5, OECD Publishing.
    5. Martelli, Emanuele & Kreutz, Thomas & Carbo, Michiel & Consonni, Stefano & Jansen, Daniel, 2011. "Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations," Applied Energy, Elsevier, vol. 88(11), pages 3978-3989.
    6. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    7. Badran, Omar Othman, 1999. "Gas-turbine performance improvements," Applied Energy, Elsevier, vol. 64(1-4), pages 263-273, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    2. Song, Chun Feng & Kitamura, Yutaka & Li, Shu Hong, 2012. "Evaluation of Stirling cooler system for cryogenic CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 491-501.
    3. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    4. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    5. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    6. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    7. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    8. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    9. Wenchao Yang & Shuhong Li & Xianliang Li & Yuanyuan Liang & Xiaosong Zhang, 2015. "Analysis of a New Liquefaction Combined with Desublimation System for CO 2 Separation Based on N 2 /CO 2 Phase Equilibrium," Energies, MDPI, vol. 8(9), pages 1-14, September.
    10. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    11. Xie, Qiyuan & Tu, Ran & Jiang, Xi & Li, Kang & Zhou, Xuejin, 2014. "The leakage behavior of supercritical CO2 flow in an experimental pipeline system," Applied Energy, Elsevier, vol. 130(C), pages 574-580.
    12. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    13. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
    14. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    15. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    16. Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
    17. Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
    18. Sanchez-Vicente, Yolanda & Tay, Weparn J. & Al Ghafri, Saif Z. & Trusler, J.P. Martin, 2018. "Thermodynamics of carbon dioxide-hydrocarbon systems," Applied Energy, Elsevier, vol. 220(C), pages 629-642.
    19. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, vol. 8(12), pages 1-27, December.
    20. Li, Didi & Jiang, Xi, 2014. "A numerical study of the impurity effects of nitrogen and sulfur dioxide on the solubility trapping of carbon dioxide geological storage," Applied Energy, Elsevier, vol. 128(C), pages 60-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:505-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.