IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3886-d1139291.html
   My bibliography  Save this article

Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles

Author

Listed:
  • Vladimir Kindra

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Igor Maksimov

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Ivan Komarov

    (Department of Innovative Technologies for High-Tech Industries, National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya, 14, 111250 Moscow, Russia)

  • Cheng Xu

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, North China Electric Power University, Beijing 102206, China)

  • Tuantuan Xin

    (Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, North China Electric Power University, Beijing 102206, China)

Abstract

Natural gas-fired combined cycle plants are nowadays one of the most efficient and environmentally friendly energy complexes. High energy efficiency and low specific emissions are achieved primarily due to the high average integral temperature of heat supply in the Brayton–Rankine cycle. In this case, the main sources of energy losses are heat losses in the condenser of the steam turbine plant and heat losses with the exhaust gases of the waste heat boiler. This work is related to the analysis of the thermodynamic and economic effects in the transition from binary to trinary cycles, in which, in addition to the gas and steam–water cycles, there is an additional cycle with a low-boiling coolant. A method for the feasibility study of a waste heat recovery unit for trinary plants is proposed. The schematic and design solutions described will ensure the increased energy and economic performance of combined cycle power plants. Based on the results of the thermodynamic optimization of the structure and parameters of thermal schemes, it was found that the use of the organic Rankine cycle with R236ea freon for the utilization of the low-grade heat of a trinary plant’s exhaust gases operating from a GTE-160 gas turbine makes it possible to achieve a net electrical efficiency of 51.3%, which is a 0.4% higher efficiency for a double-circuit combined cycle gas turbine plant and a 2.1% higher efficiency for a single-circuit cycle with similar initial parameters. On the basis of the conducted feasibility study, the parameters and characteristics of the heat exchangers of the regenerative system of the waste heat recovery unit are substantiated. The use of plain fin-and-tube heat exchangers in the regenerative system of the utilization cycle is the most promising solution. It was found that the level of allowable pressure loss in the regenerator of 10 kPa and the degree of regeneration of 80% allow for maximum economic efficiency of the waste heat recovery unit.

Suggested Citation

  • Vladimir Kindra & Igor Maksimov & Ivan Komarov & Cheng Xu & Tuantuan Xin, 2023. "Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles," Energies, MDPI, vol. 16(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3886-:d:1139291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko & Dmitrii Lvov, 2021. "Comparative Analysis of Low-Grade Heat Utilization Methods for Thermal Power Plants with Back-Pressure Steam Turbines," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Carlo Carcasci & Lapo Cheli & Pietro Lubello & Lorenzo Winchler, 2020. "Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    4. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    5. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Maksimov & Vladimir Kindra & Andrey Vegera & Andrey Rogalev & Nikolay Rogalev, 2024. "Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 17(24), pages 1-27, December.
    2. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Dmitriy Kovalev, 2024. "Reforming Natural Gas for CO 2 Pre-Combustion Capture in Trinary Cycle Power Plant," Energies, MDPI, vol. 17(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Marcin Szega & Tomasz Popławski, 2020. "Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine," Energies, MDPI, vol. 13(10), pages 1-35, May.
    2. Vladimir Kindra & Nikolay Rogalev & Andrey Rogalev & Vladimir Naumov & Ekaterina Sabanova, 2022. "Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry," Energies, MDPI, vol. 15(9), pages 1-21, April.
    3. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    4. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    5. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    6. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    7. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    8. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    9. Mariusz Niekurzak & Jerzy Mikulik, 2021. "Modeling of Energy Consumption and Reduction of Pollutant Emissions in a Walking Beam Furnace Using the Expert Method—Case Study," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
    11. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    12. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    13. Ma, Linrui & Zhang, Xuelin & Zhang, Tong & Xue, Xiaodai & Chen, Xiaotao & Si, Yang, 2024. "Design and operation of an adiabatic compressed air energy storage system incorporating a detailed heat exchanger model," Energy, Elsevier, vol. 304(C).
    14. Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
    15. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    16. Wang, Shukun & Li, Ke & Yu, Wei & Liu, Chao & Guan, Zhengjun, 2024. "Effects of non-condensable gas on thermodynamic performance of transcritical organic Rankine cycle," Energy, Elsevier, vol. 292(C).
    17. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    19. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    20. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3886-:d:1139291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.