Review of Closed SCO 2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
- Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
- Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
- Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
- Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
- Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
- Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
- Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
- Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
- Andrey Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko, 2021. "Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia," Energies, MDPI, vol. 14(21), pages 1-20, November.
- Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
- Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
- Guillermo Valencia Ochoa & Javier Cárdenas Gutierrez & Jorge Duarte Forero, 2020. "Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine," Resources, MDPI, vol. 9(1), pages 1-23, January.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
- Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
- Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
- Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
- Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
- Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
- Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
- Miroslav Variny, 2022. "Comment on Rogalev et al. Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia. Energies 2021, 14 , 7136," Energies, MDPI, vol. 15(5), pages 1-5, February.
More about this item
Keywords
supercritical carbon dioxide; power cycle; Brayton cycle; Rankine cycle; SCOC-CC; MATIANT; E-MATIANT; Allam cycle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9226-:d:994419. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.