IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9226-d994419.html
   My bibliography  Save this article

Review of Closed SCO 2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency

Author

Listed:
  • Nikolay Rogalev

    (Moscow Power Engineering Institute, National Research University, Krasnokazarmen-naya, 14, 111250 Moscow, Russia)

  • Andrey Rogalev

    (Moscow Power Engineering Institute, National Research University, Krasnokazarmen-naya, 14, 111250 Moscow, Russia)

  • Vladimir Kindra

    (Moscow Power Engineering Institute, National Research University, Krasnokazarmen-naya, 14, 111250 Moscow, Russia)

  • Olga Zlyvko

    (Moscow Power Engineering Institute, National Research University, Krasnokazarmen-naya, 14, 111250 Moscow, Russia)

  • Pavel Bryzgunov

    (Moscow Power Engineering Institute, National Research University, Krasnokazarmen-naya, 14, 111250 Moscow, Russia)

Abstract

Today, with the increases in organic fuel prices and growing legislative restrictions aimed at increasing environmental safety and reducing our carbon footprint, the task of increasing thermal power plant efficiency is becoming more and more topical. Transforming combusting fuel thermal energy into electric power more efficiently will allow the reduction of the fuel cost fraction in the cost structure and decrease harmful emissions, especially greenhouse gases, as less fuel will be consumed. There are traditional ways of improving thermal power plant energy efficiency: increasing turbine inlet temperature and utilizing exhaust heat. An alternative way to improve energy efficiency is the use of supercritical CO 2 power cycles, which have a number of advantages over traditional ones due to carbon dioxide’s thermophysical properties. In particular, the use of carbon dioxide allows increasing efficiency by reducing compression and friction losses in the wheel spaces of the turbines; in addition, it is known that CO 2 turbomachinery has smaller dimensions compared to traditional steam and gas turbines of similar capacity. Furthermore, semi-closed oxy–fuel combustion power cycles can reduce greenhouse gases emissions by many times; at the same time, they have characteristics of efficiency and specific capital costs comparable with traditional cycles. Given the high volatility of fuel prices, as well as the rising prices of carbon dioxide emission allowances, changes in efficiency, capital costs and specific greenhouse gas emissions can lead to a change in the cost of electricity generation. In this paper, key closed and semi-closed supercritical CO 2 combustion power cycles and their promising modifications are considered from the point of view of energy, economic and environmental efficiency; the cycles that are optimal in terms of technical and economic characteristics are identified among those considered.

Suggested Citation

  • Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Pavel Bryzgunov, 2022. "Review of Closed SCO 2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency," Energies, MDPI, vol. 15(23), pages 1-37, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9226-:d:994419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
    2. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    3. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
    4. Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
    5. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    6. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    7. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2015. "The characteristics of ultramodern combined cycle power plants," Energy, Elsevier, vol. 92(P2), pages 197-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
    3. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
    4. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
    5. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
    6. Andrey Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko, 2021. "Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
    8. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Guillermo Valencia Ochoa & Javier Cárdenas Gutierrez & Jorge Duarte Forero, 2020. "Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine," Resources, MDPI, vol. 9(1), pages 1-23, January.
    10. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    11. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    12. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    13. Maria Alessandra Ancona & Michele Bianchi & Lisa Branchini & Andrea De Pascale & Francesco Melino & Antonio Peretto & Noemi Torricelli, 2021. "Systematic Comparison of ORC and s-CO 2 Combined Heat and Power Plants for Energy Harvesting in Industrial Gas Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.
    14. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    15. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    17. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    18. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    19. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9226-:d:994419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.