IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2162-d1078273.html
   My bibliography  Save this article

Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation

Author

Listed:
  • Daniele Candelaresi

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
    Energy Transition Team (EnTraT srls) Academic Spin-Off of University of Cassino and Southern Lazio, 03043 Cassino, Italy)

  • Giuseppe Spazzafumo

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
    Energy Transition Team (EnTraT srls) Academic Spin-Off of University of Cassino and Southern Lazio, 03043 Cassino, Italy)

Abstract

The accumulation of energy from non-programmable renewable sources is a crucial aspect for the energy transition. Using surplus electricity from renewable energy sources, power-to-gas plants allow to produce a substitute natural gas (SNG) that can be injected in the existing infrastructure for large-scale and long-term energy storage, contributing to gas grid decarbonisation. The plant layout, the method used for carbon dioxide capture and the possible cogeneration of electricity can increase the efficiency and convenience of SNG synthesis plants. In this work, a system for the simultaneous production of SNG and electricity starting from biomass and fluctuating electricity from renewables is proposed, using a plant based on the Allam thermodynamic cycle as the power unit. The Allam power cycle uses supercritical CO 2 as evolving fluid and is based on the oxycombustion of gaseous fuels, thus greatly simplifying CO 2 capture. In the proposed system, oxycombustion is performed using biomass syngas and electrolytic oxygen. The CO 2 generated by means of oxycombustion is captured, and it is subsequently used together with renewable hydrogen for the production of SNG through thermochemical methanation. The system is also coupled with a solid oxide electrolyser and a biomass gasifier. The whole plant was analysed from an energy-related point of view. The results show overall plant efficiency of 67.6% on an LHV basis (71.6% on an HHV basis) and the simultaneous production of significant amounts of electricity and of high-calorific-value SNG, whose composition could be compatible with the existing natural gas network.

Suggested Citation

  • Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2162-:d:1078273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    2. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    3. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    4. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    5. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Reale, 2023. "The Allam Cycle: A Review of Numerical Modeling Approaches," Energies, MDPI, vol. 16(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    2. Luo, Jing & Emelogu, Ogechi & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Exergy-based investigation of a coal-fired allam cycle," Energy, Elsevier, vol. 218(C).
    3. Xin, Tuantuan & Xu, Cheng & Zhang, Yifei & Yu, Liang & Xu, Hongyu & Yang, Yongping, 2024. "Process splitting analysis and thermodynamic optimization of the Allam cycle with turbine cooling and recompression modification," Energy, Elsevier, vol. 286(C).
    4. Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
    5. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Ong, Chong Wei & Chen, Cheng-Liang, 2021. "Intensification, optimization and economic evaluations of the CO2-capturing oxy-combustion CO2 power system integrated with the utilization of liquefied natural gas cold energy," Energy, Elsevier, vol. 234(C).
    8. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Olga Zlyvko & Andrey Vegera, 2021. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    9. Dan Fernandes & Song Wang & Qiang Xu & Russel Buss & Daniel Chen, 2019. "Process and Carbon Footprint Analyses of the Allam Cycle Power Plant Integrated with an Air Separation Unit," Clean Technol., MDPI, vol. 1(1), pages 1-16, October.
    10. Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    13. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    15. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    16. Mohammadpour, Mohammadreza & Houshfar, Ehsan & Ashjaee, Mehdi & Mohammadpour, Amirreza, 2021. "Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation," Energy, Elsevier, vol. 220(C).
    17. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    18. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    19. Haas, Reinhard & Duic, Neven & Auer, Hans & Ajanovic, Amela & Ramsebner, Jasmine & Knapek, Jaroslav & Zwickl-Bernhard, Sebastian, 2023. "The photovoltaic revolution is on: How it will change the electricity system in a lasting way," Energy, Elsevier, vol. 265(C).
    20. Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2162-:d:1078273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.