Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132554
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
- Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
- Perna, A. & Minutillo, M. & Jannelli, E. & Cigolotti, V. & Nam, S.W. & Han, J., 2018. "Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC," Applied Energy, Elsevier, vol. 231(C), pages 1216-1229.
- Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
- Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
- Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
- Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
- Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
- Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
- Franco, Brais Armiño & Baptista, Patrícia & Neto, Rui Costa & Ganilha, Sofia, 2021. "Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis," Applied Energy, Elsevier, vol. 286(C).
- Alharbi, Sattam & Elsayed, Mohamed L. & Chow, Louis C., 2020. "Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination," Energy, Elsevier, vol. 197(C).
- Tozlu, Alperen & Abuşoğlu, Ayşegül & Özahi, Emrah, 2018. "Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant," Energy, Elsevier, vol. 143(C), pages 168-180.
- Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
- Fúnez Guerra, C. & Reyes-Bozo, L. & Vyhmeister, E. & Jaén Caparrós, M. & Salazar, José Luis & Clemente-Jul, C., 2020. "Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan," Renewable Energy, Elsevier, vol. 157(C), pages 404-414.
- Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
- Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
- Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
- Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).
- Noaman, Mohamed & Saade, George & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic analysis applied to supercritical CO2 power systems," Energy, Elsevier, vol. 183(C), pages 756-765.
- Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
- Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
- Daniele Candelaresi & Giuseppe Spazzafumo, 2023. "Production of Substitute Natural Gas Integrated with Allam Cycle for Power Generation," Energies, MDPI, vol. 16(5), pages 1-17, February.
- Mu, Ruiqi & Liu, Ming & Huang, Yan & Chong, Daotong & Hu, Zhiping & Yan, Junjie, 2024. "Proposal and performance analysis of a novel hydrogen and power cogeneration system with CO2 capture based on coal supercritical water gasification," Energy, Elsevier, vol. 305(C).
- Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
- Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
- Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
- Luo, Jing & Emelogu, Ogechi & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Exergy-based investigation of a coal-fired allam cycle," Energy, Elsevier, vol. 218(C).
- Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
- Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Xin, Tuantuan & Xu, Cheng & Zhang, Yifei & Yu, Liang & Xu, Hongyu & Yang, Yongping, 2024. "Process splitting analysis and thermodynamic optimization of the Allam cycle with turbine cooling and recompression modification," Energy, Elsevier, vol. 286(C).
- Alenezi, A. & Vesely, L. & Kapat, J., 2022. "Exergoeconomic analysis of hybrid sCO2 Brayton power cycle," Energy, Elsevier, vol. 247(C).
- Lorenzo Colleoni & Alessio Sindoni & Silvia Ravelli, 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load," Energies, MDPI, vol. 16(6), pages 1-19, March.
- Sun, Enhui & Ji, Hongfu & Wang, Xiangren & Ma, Wenjing & Zhang, Lei & Xu, Jinliang, 2023. "Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle," Energy, Elsevier, vol. 270(C).
- Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
- Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Quach, Thai-Quyen & Giap, Van-Tien & Keun Lee, Dong & Pineda Israel, Torres & Young Ahn, Kook, 2022. "High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation," Applied Energy, Elsevier, vol. 324(C).
- Sánchez, Antonio & Castellano, Elena & Martín, Mariano & Vega, Pastora, 2021. "Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective," Applied Energy, Elsevier, vol. 293(C).
- Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
More about this item
Keywords
Integrated power system; Cogeneration; Hydrogen; Ammonia; Direct oxy-combustion SCO2; CO2 capture;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023284. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.