IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2122-d350030.html
   My bibliography  Save this article

Performance Assessment of Axial-Flux Permanent Magnet Motors from a Manual Manufacturing Process

Author

Listed:
  • Adrian Mlot

    (Faculty of Electrical Engineering Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland)

  • Juan González

    (ARRIVAL Ltd., London W14 8TS, UK)

Abstract

Implementation of a new design for the process of assembling an axial-flux permanent magnet synchronous motor (AF PMSM) may lead to unstable motor parameters during operation at low and high speeds. In this paper, experimental data related to the AFPMSM used in an electric traction motor was monitored. The paper presents tracing of machine performance in order to find quality-related issues and to evaluate the assembly process. To assess the manual manufacturing process (low-volume production) and electrical machine performance, several motors, characterized by the same size and topology, were extensively tested. Useful AF PMSM parameters such as continuous torque and continuous current were measured. The winding temperature of the stators was also monitored and carefully examined. An attempt to assess motor performance, based on measurements and aimed at the identification of the weakest parts of the electric motor design is presented. In this paper it can be seen how the subcomponents of the machine and its detailed assembly process and tolerances play key roles in achievement of the designed continuous performance with symmetrical temperature distribution in the stator winding. Selected conclusions drawn from the obtained measurements were explained by a rotor/stator misalignment study using 3-D finite element analysis.

Suggested Citation

  • Adrian Mlot & Juan González, 2020. "Performance Assessment of Axial-Flux Permanent Magnet Motors from a Manual Manufacturing Process," Energies, MDPI, vol. 13(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2122-:d:350030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyu Liu & Qifang Lin & Weinong Fu, 2017. "Optimal Design of Permanent Magnet Arrangement in Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-16, October.
    2. Yichang Zhong & Shoudao Huang & Derong Luo, 2018. "Stabilization and Speed Control of a Permanent Magnet Synchronous Motor with Dual-Rotating Rotors," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Peng Gao & Yuxi Gu & Xiaoyuan Wang, 2018. "The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles," Energies, MDPI, vol. 11(2), pages 1-13, February.
    4. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemen Drobnič & Lovrenc Gašparin & Rastko Fišer, 2019. "Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization," Energies, MDPI, vol. 12(5), pages 1-20, February.
    2. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    3. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    4. Piotr Dukalski & Roman Krok, 2021. "Selected Aspects of Decreasing Weight of Motor Dedicated to Wheel Hub Assembly by Increasing Number of Magnetic Poles," Energies, MDPI, vol. 14(4), pages 1-27, February.
    5. Wenying Jiang & Qiqi Guo & Zhen Zhang, 2019. "Study of Excitation Characteristics of Traction Machine/Drive Systems," Energies, MDPI, vol. 13(1), pages 1-17, December.
    6. Marcel Torrent & José Ignacio Perat & José Antonio Jiménez, 2018. "Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains," Energies, MDPI, vol. 11(6), pages 1-17, June.
    7. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    8. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    9. Myeong-Hwan Hwang & Jong-Ho Han & Dong-Hyun Kim & Hyun-Rok Cha, 2018. "Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms," Energies, MDPI, vol. 11(10), pages 1-12, September.
    10. Piotr Szewczyk & Andrzej Łebkowski, 2021. "Studies on Energy Consumption of Electric Light Commercial Vehicle Powered by In-Wheel Drive Modules," Energies, MDPI, vol. 14(22), pages 1-28, November.
    11. Jinshun Hao & Shuangfu Suo & Yiyong Yang & Yang Wang & Wenjie Wang, 2019. "Power Density Analysis and Optimization of SMPMSM Based on FEM, DE Algorithm and Response Surface Methodology," Energies, MDPI, vol. 12(19), pages 1-9, September.
    12. Artur Piščalov & Edgaras Urbonas & Darius Vainorius & Jonas Matijošius & Artūras Kilikevičius, 2021. "Investigation of X and Y Configuration Modal and Dynamic Response to Velocity Excitation of the Nanometer Resolution Linear Servo Motor Stage with Quasi-Industrial Guiding System in Quasi-Stable State," Mathematics, MDPI, vol. 9(9), pages 1-25, April.
    13. Wei Chen & Jiaojiao Liang & Tingna Shi, 2018. "Speed Synchronous Control of Multiple Permanent Magnet Synchronous Motors Based on an Improved Cross-Coupling Structure," Energies, MDPI, vol. 11(2), pages 1-16, January.
    14. Zia Ullah & Jin Hur, 2018. "A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines," Energies, MDPI, vol. 11(12), pages 1-27, November.
    15. Fangwu Ma & Hongbin Yin & Lulu Wei & Liang Wu & Cansong Gu, 2018. "Analytical Calculation of Armature Reaction Field of the Interior Permanent Magnet Motor," Energies, MDPI, vol. 11(9), pages 1-12, September.
    16. Andrea Credo & Marco Tursini & Marco Villani & Claudia Di Lodovico & Michele Orlando & Federico Frattari, 2021. "Axial Flux PM In-Wheel Motor for Electric Vehicles: 3D Multiphysics Analysis," Energies, MDPI, vol. 14(8), pages 1-18, April.
    17. Francisco Juarez-Leon & Nathan Emery & Berker Bilgin, 2023. "Acoustic Noise Reduction in an 8/6 Switched Reluctance Machine Using Structural Design," Energies, MDPI, vol. 16(7), pages 1-24, April.
    18. Wuqiang Wang & Yong Li & Dajun Huan & Xiaodong Chen & Hongquan Liu & Yanrui Li & Lisha Li, 2022. "Research on Stress Design and Manufacture of the Fiber-Reinforced Composite Sleeve for the Rotor of High-Speed Permanent Magnet Motor," Energies, MDPI, vol. 15(7), pages 1-22, March.
    19. Piotr Dukalski & Jan Mikoś & Roman Krok, 2022. "Analysis of the Simulation of the Operation of a Wheel Hub Motor Mounted in a Hybrid Drive of a Delivery Vehicle," Energies, MDPI, vol. 15(21), pages 1-39, November.
    20. Farya Golesorkhie & Fuwen Yang & Ljubo Vlacic & Geoff Tansley, 2020. "Field Oriented Control-Based Reduction of the Vibration and Power Consumption of a Blood Pump," Energies, MDPI, vol. 13(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2122-:d:350030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.