IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p424-d131584.html
   My bibliography  Save this article

The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles

Author

Listed:
  • Peng Gao

    (School of Electrical and Information Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China)

  • Yuxi Gu

    (School of Electrical and Information Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China)

  • Xiaoyuan Wang

    (School of Electrical and Information Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China)

Abstract

The in-wheel motor has received more attention owing to its simple structure, high transmission efficiency, flexible control, and easy integration design. It is difficult to achieve high performance with conventional motors due to their dimensions and structure. This paper presents a new dual-stator and dual-field-excitation permanent-magnet in-wheel motor (DDPMIM) that is based on the structure of the conventional in-wheel motor and the structure of both the radial and axial magnetic field motor. The finite element analysis (FEA) model of the DDPMIM is established and compared with that of the conventional in-wheel motor. The results show that the DDPMIM achieves a higher output torque at low speeds and that the flux-weakening control strategy is not needed in the full speed range.

Suggested Citation

  • Peng Gao & Yuxi Gu & Xiaoyuan Wang, 2018. "The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles," Energies, MDPI, vol. 11(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:424-:d:131584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/424/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Szewczyk & Andrzej Łebkowski, 2021. "Studies on Energy Consumption of Electric Light Commercial Vehicle Powered by In-Wheel Drive Modules," Energies, MDPI, vol. 14(22), pages 1-28, November.
    2. Piotr Dukalski & Jan Mikoś & Roman Krok, 2022. "Analysis of the Simulation of the Operation of a Wheel Hub Motor Mounted in a Hybrid Drive of a Delivery Vehicle," Energies, MDPI, vol. 15(21), pages 1-39, November.
    3. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    4. Adrian Mlot & Juan González, 2020. "Performance Assessment of Axial-Flux Permanent Magnet Motors from a Manual Manufacturing Process," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Piotr Dukalski & Roman Krok, 2021. "Selected Aspects of Decreasing Weight of Motor Dedicated to Wheel Hub Assembly by Increasing Number of Magnetic Poles," Energies, MDPI, vol. 14(4), pages 1-27, February.
    6. Andrea Credo & Marco Tursini & Marco Villani & Claudia Di Lodovico & Michele Orlando & Federico Frattari, 2021. "Axial Flux PM In-Wheel Motor for Electric Vehicles: 3D Multiphysics Analysis," Energies, MDPI, vol. 14(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:424-:d:131584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.