IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p151-d302692.html
   My bibliography  Save this article

Study of Excitation Characteristics of Traction Machine/Drive Systems

Author

Listed:
  • Wenying Jiang

    (Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Qiqi Guo

    (Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Zhen Zhang

    (Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

In order to accurately evaluate the performance of a traction machine/drive system, it is necessary to have an accurate excitation source which considers current harmonics. In this paper, four machine/drive systems with different excitation sources have been modeled, simulated, and studied to evaluate the effects on permanent magnet synchronous machines (PMSMs) from different perspectives. In Model I, the excitation is an ideal sinusoidal current source with no harmonics. Model II is excited by an ideal sinusoidal voltage source regardless of the pulse width modification’s (PWM’s) influence. Model III takes into account the influence of current harmonics under space vector pulse width modulation (SVPWM) control. Model IV is based on the equivalent circuit extraction (ECE) model (a look-up table motor model). We simulate these four models and study the characteristics of the excitation sources, based on the observations of current harmonics, torque, electromagnetic force, computation time, and efficiency. Experiments are also conducted to show that Model III allows the most precise study of the considered system. Model IV is a good substitution, providing similar results with a shorter running time.

Suggested Citation

  • Wenying Jiang & Qiqi Guo & Zhen Zhang, 2019. "Study of Excitation Characteristics of Traction Machine/Drive Systems," Energies, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:151-:d:302692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    2. Adrian Mlot & Juan González, 2020. "Performance Assessment of Axial-Flux Permanent Magnet Motors from a Manual Manufacturing Process," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Zia Ullah & Jin Hur, 2018. "A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines," Energies, MDPI, vol. 11(12), pages 1-27, November.
    4. Fangwu Ma & Hongbin Yin & Lulu Wei & Liang Wu & Cansong Gu, 2018. "Analytical Calculation of Armature Reaction Field of the Interior Permanent Magnet Motor," Energies, MDPI, vol. 11(9), pages 1-12, September.
    5. Francisco Juarez-Leon & Nathan Emery & Berker Bilgin, 2023. "Acoustic Noise Reduction in an 8/6 Switched Reluctance Machine Using Structural Design," Energies, MDPI, vol. 16(7), pages 1-24, April.
    6. Farya Golesorkhie & Fuwen Yang & Ljubo Vlacic & Geoff Tansley, 2020. "Field Oriented Control-Based Reduction of the Vibration and Power Consumption of a Blood Pump," Energies, MDPI, vol. 13(15), pages 1-18, July.
    7. Emil Król & Marcin Maciążek & Tomasz Wolnik, 2023. "Review of Vibroacoustic Analysis Methods of Electric Vehicles Motors," Energies, MDPI, vol. 16(4), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:151-:d:302692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.