IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1076-d326756.html
   My bibliography  Save this article

Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation

Author

Listed:
  • Yurii Gutarevych

    (Department of Engines and Thermal Engineering, Faculty of Faculty of Automotive and Mechanical Engineering, National Transport University, Mykhaila Omelianovycha-Pavlenka Str. 1, 01010 Kyiv, Ukraine)

  • Vasyl Mateichyk

    (Department of Ecology and Safety of Vital Functions, Faculty of Faculty of Automotive and Mechanical Engineering, National Transport University, Mykhaila Omelianovycha-Pavlenka Str. 1, 01010 Kyiv, Ukraine)

  • Jonas Matijošius

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania)

  • Alfredas Rimkus

    (Department of Automobile Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
    Department of Automobile Transport Engineering, Vilnius College of Technologies and Design, Antakalnio St. 54, LT-10303 Vilnius, Lithuania)

  • Igor Gritsuk

    (Department of Technical Exploitation and Service of Cars, Kharkiv National Automobile and Highway University (KhNAHU), Yaroslava Mudrogo St, 25, 61000 Kharkiv, Ukraine)

  • Oleksander Syrota

    (Department of Engines and Thermal Engineering, Faculty of Faculty of Automotive and Mechanical Engineering, National Transport University, Mykhaila Omelianovycha-Pavlenka Str. 1, 01010 Kyiv, Ukraine)

  • Yevheniy Shuba

    (Department of Engines and Thermal Engineering, Faculty of Faculty of Automotive and Mechanical Engineering, National Transport University, Mykhaila Omelianovycha-Pavlenka Str. 1, 01010 Kyiv, Ukraine)

Abstract

One of the disadvantages of spark ignition engines, whose power is regulated by throttling, is the increased fuel consumption at low loads and when the engine is idle. The combined method of engine power regulation by switching off the cylinder group and throttling working cylinders is one of the effective ways to improve fuel economy in the above-mentioned modes. This article presents the research results of the combined method of engine power regulation which can be realized by minor structural changes in operating conditions. The method implies the following: at low loads and at idle speed of the engine. Fuel supply to the group of cylinders is switched off with the simultaneous increase of the cyclic fuel supply in the working cylinders. The adequacy of the calculated results has been checked by the indication of operating processes in switched off and working cylinders. The research results of a six-cylinder spark ignition engine with the distributed gasoline injection using the combined power regulation system have been shown. The angles of opening the throttle which provides a non-shock transition from the operation with all cylinders to the operation with the cylinder group switched off have been determined.

Suggested Citation

  • Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1076-:d:326756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lin & Pan, Jiaying & Liu, Changwen & Shu, Gequn & Wei, Haiqiao, 2020. "Effect of rapid combustion on engine performance and knocking characteristics under different spark strategy conditions," Energy, Elsevier, vol. 192(C).
    2. Szabados, György & Bereczky, Ákos, 2018. "Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine," Renewable Energy, Elsevier, vol. 121(C), pages 568-578.
    3. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    4. Li, Xiang & Sun, Jian-Qiao, 2014. "Effect of interactions between vehicles and pedestrians on fuel consumption and emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 661-675.
    5. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    6. Turkensteen, Marcel, 2017. "The accuracy of carbon emission and fuel consumption computations in green vehicle routing," European Journal of Operational Research, Elsevier, vol. 262(2), pages 647-659.
    7. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    8. Schröder, Stefan & Liedtke, Gernot Thorsten, 2017. "Towards an integrated multi-agent urban transport model of passenger and freight," Research in Transportation Economics, Elsevier, vol. 64(C), pages 3-12.
    9. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    10. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    11. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    12. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    13. Xu, Zidan & Zhang, Yahui & Di, Huanyu & Shen, Tielong, 2019. "Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    15. Malik, Leeza & Tiwari, Geetam, 2017. "Assessment of interstate freight vehicle characteristics and impact of future emission and fuel economy standards on their emissions in India," Energy Policy, Elsevier, vol. 108(C), pages 121-133.
    16. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    17. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    18. Tsuboi, Seima & Miyokawa, Shinji & Matsuda, Masayoshi & Yokomori, Takeshi & Iida, Norimasa, 2019. "Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine," Applied Energy, Elsevier, vol. 250(C), pages 617-632.
    19. Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
    20. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donatas Kriaučiūnas & Tadas Žvirblis & Kristina Kilikevičienė & Artūras Kilikevičius & Jonas Matijošius & Alfredas Rimkus & Darius Vainorius, 2021. "Impact of Simulated Biogas Compositions (CH 4 and CO 2 ) on Vibration, Sound Pressure and Performance of a Spark Ignition Engine," Energies, MDPI, vol. 14(21), pages 1-15, October.
    2. Ivan Manko & Jonas Matijošius & Yevheniy Shuba & Alfredas Rimkus & Serhiy Gutarevych & Viktor Slavin, 2022. "Using Mathematical Modeling to Evaluate the Performance of a Passenger Car When Operating on Various Fuels," Energies, MDPI, vol. 15(17), pages 1-11, August.
    3. Alfredas Rimkus & Jonas Matijošius & Sai Manoj Rayapureddy, 2020. "Research of Energy and Ecological Indicators of a Compression Ignition Engine Fuelled with Diesel, Biodiesel (RME-Based) and Isopropanol Fuel Blends," Energies, MDPI, vol. 13(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredas Rimkus & Jonas Matijošius & Sai Manoj Rayapureddy, 2020. "Research of Energy and Ecological Indicators of a Compression Ignition Engine Fuelled with Diesel, Biodiesel (RME-Based) and Isopropanol Fuel Blends," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    3. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    4. d'Adamo, A. & Iacovano, C. & Fontanesi, S., 2020. "Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine," Applied Energy, Elsevier, vol. 280(C).
    5. Nurul Hidayah Muslim & Ali Keyvanfar & Arezou Shafaghat & Mu’azu Mohammed Abdullahi & Majid Khorami, 2018. "Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission," Sustainability, MDPI, vol. 10(2), pages 1-30, January.
    6. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    7. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
    8. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    9. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    10. Wojciech Tutak & Arkadiusz Jamrozik & Karol Grab-Rogaliński, 2021. "The Effect of RME-1-Butanol Blends on Combustion, Performance and Emission of a Direct Injection Diesel Engine," Energies, MDPI, vol. 14(10), pages 1-16, May.
    11. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    12. Luca Marchitto & Cinzia Tornatore & Luigi Teodosio, 2020. "Individual Cylinder Combustion Optimization to Improve Performance and Fuel Consumption of a Small Turbocharged SI Engine," Energies, MDPI, vol. 13(21), pages 1-21, October.
    13. Wei, Haiqiao & Zhang, Ren & Chen, Lin & Pan, Jiaying & Wang, Xuan, 2021. "Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio," Energy, Elsevier, vol. 223(C).
    14. Donatas Kriaučiūnas & Tadas Žvirblis & Kristina Kilikevičienė & Artūras Kilikevičius & Jonas Matijošius & Alfredas Rimkus & Darius Vainorius, 2021. "Impact of Simulated Biogas Compositions (CH 4 and CO 2 ) on Vibration, Sound Pressure and Performance of a Spark Ignition Engine," Energies, MDPI, vol. 14(21), pages 1-15, October.
    15. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    17. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    18. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    19. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    20. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1076-:d:326756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.