IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp204-221.html
   My bibliography  Save this article

Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models

Author

Listed:
  • Cocco Mariani, Viviana
  • Hennings Och, Stephan
  • dos Santos Coelho, Leandro
  • Domingues, Eric

Abstract

In this study, the cyclic of a spark ignition engine using octane fuel is modeled using extreme learning machine, an emergent technology related to single-hidden layer feedforward neural networks (SLFNs). The experimental engine case study was operated with five different engine speeds from 1000 to 3000 rpm, and crankshaft angle from −360° to 360° without exhaust gas recirculation. The mean effective pressure was used to indicate the cyclic variability for the mean of 100 consecutive cycles. In this study the extreme learning machine (ELM), the regularized extreme learning machine and the outlier robust extreme learning machine were applied to predict the conditions of a combustion parameter used to reflect pressure information for entire cycle in a single-cylinder compression ignition naturally aspirated engine. Prediction by ELM models is normally faster than mathematical models employed to solve a set of differential equations by iterative numerical methods. The essence of ELM is that the hidden layer of SLFNs need not be tuned. Nevertheless, the selection of an appropriate ELM topology is crucial in terms of simplicity, velocity and accuracy. The suitable determination of the number of hidden layer nodes (neurons), type of activation function, and sparse connection structure of weights and biases were obtained using a modified biogeography-based optimization approach (BBO), a population-based metaheuristic algorithm inspired on the mathematical model of organism distribution in biological systems. The experimental dataset were used to train ELM models, and the reliability of these models was assessed and compared for two case studies based on performance criteria related to accuracy, sparsity and complexity using a cross-validation procedure. After training, experimental results show that the pressure can be modeled with reasonable accuracy. The results analysis indicated that the proposed optimized ELM and its variants optimized by BBO approaches have potential for prediction the mean effective pressure showed reasonable consistency with the experimental results.

Suggested Citation

  • Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:204-221
    DOI: 10.1016/j.apenergy.2019.04.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud, Tawfek & Dong, Z.Y. & Ma, Jin, 2018. "An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine," Renewable Energy, Elsevier, vol. 126(C), pages 254-269.
    2. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    3. Kim, Jaeheun & Bae, Choongsik & Kim, Gangchul, 2013. "Simulation on the effect of the combustion parameters on the piston dynamics and engine performance using the Wiebe function in a free piston engine," Applied Energy, Elsevier, vol. 107(C), pages 446-455.
    4. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
    5. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    6. Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
    7. Gülüm, Mert & Onay, Funda Kutlu & Bilgin, Atilla, 2018. "Comparison of viscosity prediction capabilities of regression models and artificial neural networks," Energy, Elsevier, vol. 161(C), pages 361-369.
    8. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    9. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    10. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.
    11. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    12. Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
    13. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
    2. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    3. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
    4. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    5. Su-qi Zhang & Kuo-Ping Lin, 2020. "Short-Term Traffic Flow Forecasting Based on Data-Driven Model," Mathematics, MDPI, vol. 8(2), pages 1-17, January.
    6. Li, Yunfeng & Xue, Wenli & Wu, Ting & Wang, Huaizhi & Zhou, Bin & Aziz, Saddam & He, Yang, 2021. "Intrusion detection of cyber physical energy system based on multivariate ensemble classification," Energy, Elsevier, vol. 218(C).
    7. Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Li, Ji & Zhou, Quan & He, Xu & Chen, Wan & Xu, Hongming, 2023. "Data-driven enabling technologies in soft sensors of modern internal combustion engines: Perspectives," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yong-Ping & Hu, Qian-Kun & Xu, Jian-Guo & Li, Bing & Huang, Gong & Pan, Ying-Ting, 2018. "A robust extreme learning machine for modeling a small-scale turbojet engine," Applied Energy, Elsevier, vol. 218(C), pages 22-35.
    2. Chan-Uk Yeom & Keun-Chang Kwak, 2017. "Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    4. Shan, Rui & Sasthav, Colin & Wang, Xianxun & Lima, Luana M.M., 2020. "Complementary relationship between small-hydropower and increasing penetration of solar photovoltaics: Evidence from CAISO," Renewable Energy, Elsevier, vol. 155(C), pages 1139-1146.
    5. Xiao, Wenjing & Mo, Li & Xu, Zhanxing & Liu, Chang & Zhang, Yongchuan, 2024. "A hybrid electric load forecasting model based on decomposition considering fisher information," Applied Energy, Elsevier, vol. 364(C).
    6. Bahri, Bahram & Shahbakhti, Mahdi & Kannan, Kaushik & Aziz, Azhar Abdul, 2016. "Identification of ringing operation for low temperature combustion engines," Applied Energy, Elsevier, vol. 171(C), pages 142-152.
    7. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    8. Chukwuemeka Uguba Owora & Samson Kolawole Fasogbon, 2020. "Rainfall Variability and Trends over Central Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 24(4), pages 145-156, May.
    9. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    10. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    11. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    12. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    13. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    14. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    15. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    16. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    17. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    18. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    19. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    20. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:204-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.