IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v170y2015ipap234-242.html
   My bibliography  Save this article

Vehicle routing problem with fuel consumption and carbon emission

Author

Listed:
  • Zhang, Jianghua
  • Zhao, Yingxue
  • Xue, Weili
  • Li, Jin

Abstract

In this paper, we study a vehicle routing problem (VRP) with the consideration of fuel consumption and carbon emission. To be specific, we incorporate fuel cost, carbon emission cost, and vehicle usage cost into the traditional VRP problem and establish a low-carbon routing problem model. Based on the route splitting method, we develop an improved tabu search algorithm named RS-TS for solving the model. In the RS-TS algorithm, we introduce a novel route encoding and decoding algorithm named WSS, in which three neighborhood search methods are applied. By numerical studies we show that the RS-TS algorithm is effective with a satisfactory solution and can better reveal the relationships among distance, fuel consumption, travel time, and other parameters. Moreover, we also show that the route and vehicle arrangements based on fuel consumption and carbon emission are both economic and environmentally friendly.

Suggested Citation

  • Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
  • Handle: RePEc:eee:proeco:v:170:y:2015:i:pa:p:234-242
    DOI: 10.1016/j.ijpe.2015.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315003692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    2. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    3. Kim, Kap Hwan & Jun Chung, Woo & Hwang, Hark & Seong Ko, Chang, 2005. "A distributed dispatching method for the brokerage of truckload freights," International Journal of Production Economics, Elsevier, vol. 98(2), pages 150-161, November.
    4. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    5. Gulczynski, Damon & Golden, Bruce & Wasil, Edward, 2010. "The split delivery vehicle routing problem with minimum delivery amounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 612-626, September.
    6. Andres Figliozzi, Miguel, 2012. "The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 616-636.
    7. J Bauer & T Bektaş & T G Crainic, 2010. "Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 530-542, March.
    8. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    9. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    10. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    11. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    12. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    13. Bish, Ebru K., 2003. "A multiple-crane-constrained scheduling problem in a container terminal," European Journal of Operational Research, Elsevier, vol. 144(1), pages 83-107, January.
    14. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    3. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2023. "Time-dependent fleet size and mix multi-depot vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2014. "Optimization-Based Adaptive Large Neighborhood Search for the Production Routing Problem," Transportation Science, INFORMS, vol. 48(1), pages 20-45, February.
    5. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    6. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    8. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    9. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    10. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    11. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    12. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    14. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    15. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    16. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    17. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    18. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    19. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    20. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:170:y:2015:i:pa:p:234-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.