IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221028759.html
   My bibliography  Save this article

Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning

Author

Listed:
  • Alqahtani, Mohammed
  • Hu, Mengqi

Abstract

The demand on energy is uncertain and subject to change with time due to several factors including the emergence of new technology, entertainment, divergence of people's consumption habits, changing weather conditions, etc. Moreover, increases in energy demand are growing every day due to increases in world's population and growth of global economy, which substantially increase the chances of disruptions in power supply. This makes the security of power supply a more challenging task especially during seasons (e.g. summer and winter). This paper proposes a reinforcement learning model to address the uncertainties in power supply and demand by dispatching a set of electric vehicles to supply energy to different consumers at different locations. An electric vehicle is mounted with various energy resources (e.g., PV panel, energy storage) that share power generation units and storages among different consumers to power their premises to reduce energy costs. The performance of the reinforcement learning model is assessed under different configurations of consumers and electric vehicles, and compared to the results from CPLEX and three heuristic algorithms. The simulation results demonstrate that the reinforcement learning algorithm can reduce energy costs up to 22.05%, 22.57%, and 19.33% compared to the genetic algorithm, particle swarm optimization, and artificial fish swarm algorithm results, respectively.

Suggested Citation

  • Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028759
    DOI: 10.1016/j.energy.2021.122626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Alcaraz, G. & Galván, E. & González-Cabrera, N. & Javadi, M.S., 2015. "Renewable energy resources short-term scheduling and dynamic network reconfiguration for sustainable energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 256-264.
    2. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    3. Salehizadeh, Mohammad Reza & Soltaniyan, Salman, 2016. "Application of fuzzy Q-learning for electricity market modeling by considering renewable power penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1172-1181.
    4. Chen, Yang & Hu, Mengqi, 2016. "Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters," Energy, Elsevier, vol. 109(C), pages 1075-1085.
    5. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    6. Soares, João & Ghazvini, Mohammad Ali Fotouhi & Borges, Nuno & Vale, Zita, 2017. "Dynamic electricity pricing for electric vehicles using stochastic programming," Energy, Elsevier, vol. 122(C), pages 111-127.
    7. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    8. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    9. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    10. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    11. Sunyong Kim & Hyuk Lim, 2018. "Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings," Energies, MDPI, vol. 11(8), pages 1-19, August.
    12. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    13. Tsikalakis, A.G. & Hatziargyriou, N.D., 2007. "Environmental benefits of distributed generation with and without emissions trading," Energy Policy, Elsevier, vol. 35(6), pages 3395-3409, June.
    14. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    15. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    16. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    17. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    18. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    19. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    2. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Xue, Lin & Wang, Jianxue & Zhang, Yao & Yong, Weizhen & Qi, Jie & Li, Haotian, 2023. "Model-data-event based community integrated energy system low-carbon economic scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Anna Auza & Ehsan Asadi & Behrang Chenari & Manuel Gameiro da Silva, 2023. "A Systematic Review of Uncertainty Handling Approaches for Electric Grids Considering Electrical Vehicles," Energies, MDPI, vol. 16(13), pages 1-25, June.
    5. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    6. Wang, Yi & Qiu, Dawei & He, Yinglong & Zhou, Quan & Strbac, Goran, 2023. "Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling," Energy, Elsevier, vol. 284(C).
    7. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
    8. Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    9. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    2. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    3. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    4. Flores, Robert J. & Brouwer, Jacob, 2018. "Optimal design of a distributed energy resource system that economically reduces carbon emissions," Applied Energy, Elsevier, vol. 232(C), pages 119-138.
    5. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    6. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    7. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    8. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    9. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    10. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, vol. 8(12), pages 1-15, November.
    12. Yujian Ye & Dawei Qiu & Huiyu Wang & Yi Tang & Goran Strbac, 2021. "Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning," Energies, MDPI, vol. 14(3), pages 1-22, January.
    13. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    14. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    15. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    16. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    17. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    18. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    19. Hoehne, Christopher G. & Chester, Mikhail V., 2016. "Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions," Energy, Elsevier, vol. 115(P1), pages 646-657.
    20. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.