IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p315-d306647.html
   My bibliography  Save this article

A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System

Author

Listed:
  • Jiansong Li

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Research and Development Center for Intelligent Manufacturing Technology of Engineering Equipment, Xuzhou College of Industrial Technology, Xuzhou 221140, China
    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA)

  • Jiyun Zhao

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaochun Zhang

    (School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Implementing an energy recovery system (ERS) is an effective solution to improve energy efficiency for hydraulic excavators (HEs). A flywheel energy recovery system (FERS) is proposed based on this concept. A hydraulic pump motor (PM) is employed as the energy conversion component and a flywheel is used as the energy storage component. Since the pressure is low because the bucket is usually empty as the boom lowers, a relatively large PM should be used in the FERS. To overcome this drawback, a novel compound energy recovery system integrating flywheel and flow regeneration (FFERS) is proposed in this paper. The working principle of the system is analyzed in detail. The introduction of flow regeneration has two benefits; one is downsizing the displacement of PM and the other one is an extra improvement of energy efficiency. The primary parameters of both are matched based on a 4 t excavator. Compared with the PM used in the FERS, the PM displacement in the FFERS is reduced by 71%. For comparison, a general model that can operate in either the FERS mode or the FFERS mode is developed in AMESim. The modeling results show that the FFERS with a downsized PM contributes a 13% increase in energy recovery and reutilization efficiency (62%) as compared with the FERS.

Suggested Citation

  • Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:315-:d:306647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qihuai & Lin, Tianliang & Ren, Haoling & Fu, Shengjie, 2019. "Novel potential energy regeneration systems for hybrid hydraulic excavators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 130-145.
    2. Lin, Tianliang & Chen, Qiang & Ren, Haoling & Huang, Weiping & Chen, Qihuai & Fu, Shengjie, 2017. "Review of boom potential energy regeneration technology for hydraulic construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 358-371.
    3. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    4. Magnus Hedlund & Johan Lundin & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2015. "Flywheel Energy Storage for Automotive Applications," Energies, MDPI, vol. 8(10), pages 1-28, September.
    5. Spiryagin, Maksym & Wolfs, Peter & Szanto, Frank & Sun, Yan Quan & Cole, Colin & Nielsen, Dwayne, 2015. "Application of flywheel energy storage for heavy haul locomotives," Applied Energy, Elsevier, vol. 157(C), pages 607-618.
    6. Hao, Yunxiao & Quan, Long & Cheng, Hang & Xia, Lianpeng & Ge, Lei & Zhao, Bin, 2018. "Potential energy directly conversion and utilization methods used for heavy duty lifting machinery," Energy, Elsevier, vol. 155(C), pages 242-251.
    7. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    8. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukasz Stawinski & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Efficiency and Limitations of the Methods of Controlling the Hydraulic Cylinder Piston Rod under Various Load Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
    2. Do, Tri Cuong & Dang, Tri Dung & Dinh, Truong Quang & Ahn, Kyoung Kwan, 2021. "Developments in energy regeneration technologies for hydraulic excavators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Hydro-Pneumatic Accumulator Models for the Study of the Energy Efficiency of Hydraulic Systems," Energies, MDPI, vol. 16(18), pages 1-45, September.
    4. Jian Yang & Tiezhu Zhang & Hongxin Zhang & Jichao Hong & Zewen Meng, 2020. "Research on the Starting Acceleration Characteristics of a New Mechanical–Electric–Hydraulic Power Coupling Electric Vehicle," Energies, MDPI, vol. 13(23), pages 1-20, November.
    5. Paolo Casoli & Fabio Scolari & Carlo Maria Vescovini & Massimo Rundo, 2022. "Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator," Energies, MDPI, vol. 15(7), pages 1-15, April.
    6. Daling Yue & Hongfei Gao & Zengguang Liu & Liejiang Wei & Yinshui Liu & Xiukun Zuo, 2023. "Potential Energy Recovery and Direct Reuse System of Hydraulic Hybrid Excavators Based on the Digital Pump," Energies, MDPI, vol. 16(13), pages 1-17, July.
    7. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    4. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    7. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    8. Tan, Lisha & He, Xiangyu & Xiao, Guangxin & Jiang, Mengjun & Yuan, Yulin, 2022. "Design and energy analysis of novel hydraulic regenerative potential energy systems," Energy, Elsevier, vol. 249(C).
    9. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    10. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    11. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).
    12. Changli Shi & Tongzhen Wei & Xisheng Tang & Long Zhou & Tongshuo Zhang, 2019. "Charging–Discharging Control Strategy for a Flywheel Array Energy Storage System Based on the Equal Incremental Principle," Energies, MDPI, vol. 12(15), pages 1-27, July.
    13. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Do, Tri Cuong & Dang, Tri Dung & Dinh, Truong Quang & Ahn, Kyoung Kwan, 2021. "Developments in energy regeneration technologies for hydraulic excavators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    16. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    17. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    19. Truong, D.Q. & Marco, J. & Greenwood, D. & Harper, L. & Corrochano, D.G. & Yoon, J.I., 2018. "Challenges of micro/mild hybridisation for construction machinery and applicability in UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 301-320.
    20. Wen Ji & Fei Ni & Dinggang Gao & Shihui Luo & Qichao Lv & Dongyuan Lv, 2021. "Electromagnetic Design of High-Power and High-Speed Permanent Magnet Synchronous Motor Considering Loss Characteristics," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:315-:d:306647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.