IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v163y2019icp130-145.html
   My bibliography  Save this article

Novel potential energy regeneration systems for hybrid hydraulic excavators

Author

Listed:
  • Chen, Qihuai
  • Lin, Tianliang
  • Ren, Haoling
  • Fu, Shengjie

Abstract

This paper proposes a novel potential energy regeneration system (PERS) using a hydraulic accumulator and a valve–motor–generator for a hybrid hydraulic excavator (HHE). To analyze the dynamic performance of the proposed PERS, mathematical models are established. A numerical analysis is conducted to guide the parameters design of the key components in the PERS. The control strategy for the energy regeneration system (ERS) is discussed. Simulations are carried out in AMESim to validate the effectiveness of the novel PERS. The results demonstrate that the dynamic performance of the PERS is close to that of a throttle-governing system. The efficiency of the PERS is about 58%.

Suggested Citation

  • Chen, Qihuai & Lin, Tianliang & Ren, Haoling & Fu, Shengjie, 2019. "Novel potential energy regeneration systems for hybrid hydraulic excavators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 130-145.
  • Handle: RePEc:eee:matcom:v:163:y:2019:i:c:p:130-145
    DOI: 10.1016/j.matcom.2019.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419300758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quan, Zhongyi & Quan, Long & Zhang, Jinman, 2014. "Review of energy efficient direct pump controlled cylinder electro-hydraulic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 336-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do, Tri Cuong & Dang, Tri Dung & Dinh, Truong Quang & Ahn, Kyoung Kwan, 2021. "Developments in energy regeneration technologies for hydraulic excavators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Kwon, Hyukjoon & Ivantysynova, Monika, 2021. "Experimental and theoretical studies on energy characteristics of hydraulic hybrids for thermal management," Energy, Elsevier, vol. 223(C).
    3. Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
    4. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Li, Zhongshen & Chen, Qihuai, 2021. "A double variable control load sensing system for electric hydraulic excavator," Energy, Elsevier, vol. 223(C).
    5. Lukasz Stawinski & Jakub Zaczynski & Adrian Morawiec & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift," Energies, MDPI, vol. 14(5), pages 1-14, March.
    6. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    7. Thanh Ha Nguyen & Tri Cuong Do & Van Du Phan & Kyoung Kwan Ahn, 2023. "Working Performance Improvement of a Novel Independent Metering Valve System by Using a Neural Network-Fractional Order-Proportional-Integral-Derivative Controller," Mathematics, MDPI, vol. 11(23), pages 1-21, November.
    8. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    9. Tan, Lisha & He, Xiangyu & Xiao, Guangxin & Jiang, Mengjun & Yuan, Yulin, 2022. "Design and energy analysis of novel hydraulic regenerative potential energy systems," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tianliang & Chen, Qiang & Ren, Haoling & Huang, Weiping & Chen, Qihuai & Fu, Shengjie, 2017. "Review of boom potential energy regeneration technology for hydraulic construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 358-371.
    2. Jin, Rui & Li, Lei & Liang, Xiaoling & Zou, Xiang & Yang, Zeyuan & Ge, Shuzhi Sam & Huang, Haihong, 2024. "Energy-efficient design of the powertrain for mechanical-electro-hydraulic equipment via configuring multidimensional controllable variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    3. Xiangyang Li & Yiting Xi & Dunhui Xiao & Jiaxin Tao, 2021. "Valve Plate Structural Optimal Design and Flow Field Analysis for the Aviation Bidirectional Three-Port Piston Pump," Energies, MDPI, vol. 14(11), pages 1-14, June.
    4. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    5. Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
    6. Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
    7. Søren Ketelsen & Damiano Padovani & Torben O. Andersen & Morten Kjeld Ebbesen & Lasse Schmidt, 2019. "Classification and Review of Pump-Controlled Differential Cylinder Drives," Energies, MDPI, vol. 12(7), pages 1-27, April.
    8. Jun-hui Zhang & Gan Liu & Ruqi Ding & Kun Zhang & Min Pan & Shihao Liu, 2019. "3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design," Energies, MDPI, vol. 12(13), pages 1-21, June.
    9. Mingkun Yang & Xianhang Liu & Guishan Yan & Chao Ai & Cong Yu, 2024. "Research on Variable Speed Variable Displacement Power Unit with High Efficiency and High Dynamic Optimized Matching," Energies, MDPI, vol. 17(13), pages 1-22, July.
    10. Xuefei Li & Chao Duan & Kun Bai & Zongwei Yao, 2021. "Operating Performance of Pure Electric Loaders with Different Types of Motors Based on Simulation Analysis," Energies, MDPI, vol. 14(3), pages 1-19, January.
    11. Teemu Koitto & Heikki Kauranne & Olof Calonius & Tatiana Minav & Matti Pietola, 2019. "Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit," Energies, MDPI, vol. 12(8), pages 1-17, April.
    12. Damiano Padovani & Søren Ketelsen & Daniel Hagen & Lasse Schmidt, 2019. "A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability," Energies, MDPI, vol. 12(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:163:y:2019:i:c:p:130-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.