IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp937-950.html
   My bibliography  Save this article

Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants

Author

Listed:
  • Barelli, L.
  • Bidini, G.
  • Bonucci, F.
  • Castellini, L.
  • Fratini, A.
  • Gallorini, F.
  • Zuccari, A.

Abstract

The present work investigates the advantages of integrating a hybrid energy storage system in a residential micro-grid, coupled to a PV plant. Specifically, battery hybridization with mechanical flywheel is considered. A suitable code, implementing a dedicated logic of power management, is developed to investigate several design conditions and features, simulating the behavior of both storage devices along one year of operation with 1 min time step. The energy performances of the different micro-grid configurations are presented and discussed. Moreover, based on the simulated yearly trends of the battery state of charge, the effects of flywheel on the battery life are determined resulting in a significant improvement with respect to non-hybrid configurations. In particular, life battery almost triples in the case lead-gel technology is adopted, while the life gain reaches a mean value of 3.6 for lithium-ion battery packs. This result is validated through suitable aging tests on LiFePO4 cells over three equivalent years of operation.

Suggested Citation

  • Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:937-950
    DOI: 10.1016/j.energy.2019.02.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    2. Bove, Roberto & Bucher, Matthias & Ferretti, Fabio, 2012. "Integrating large shares of wind energy in macro-economical cost-effective way," Energy, Elsevier, vol. 43(1), pages 438-447.
    3. Barelli, L. & Bidini, G. & Bonucci, F., 2016. "A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration," Energy, Elsevier, vol. 113(C), pages 831-844.
    4. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    5. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.
    6. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    7. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    8. Cho, Seolhee & Kim, Jiyong, 2015. "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea," Energy, Elsevier, vol. 85(C), pages 317-328.
    9. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    10. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    11. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    12. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    13. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    14. Pickard, William F. & Shen, Amy Q. & Hansing, Nicholas J., 2009. "Parking the power: Strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1934-1945, October.
    15. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Bianchi, Fernando D., 2013. "Energy management of flywheel-based energy storage device for wind power smoothing," Applied Energy, Elsevier, vol. 110(C), pages 207-219.
    16. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    17. Fang, Xiang & Kutkut, Nasser & Shen, John & Batarseh, Issa, 2011. "Analysis of generalized parallel-series ultracapacitor shift circuits for energy storage systems," Renewable Energy, Elsevier, vol. 36(10), pages 2599-2604.
    18. Belouda, Malek & Jaafar, Amine & Sareni, Bruno & Roboam, Xavier & Belhadj, Jamel, 2016. "Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 144-154.
    19. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    20. Belouda, M. & Jaafar, A. & Sareni, B. & Roboam, X. & Belhadj, J., 2013. "Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 616-624.
    21. Barelli, L. & Desideri, U. & Ottaviano, A., 2015. "Challenges in load balance due to renewable energy sources penetration: The possible role of energy storage technologies relative to the Italian case," Energy, Elsevier, vol. 93(P1), pages 393-405.
    22. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    23. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    24. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    25. Prodromidis, George N. & Coutelieris, Frank A., 2012. "Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects," Renewable Energy, Elsevier, vol. 39(1), pages 149-153.
    26. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    27. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    28. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Li, Yan & Shi, Man & Song, Yuling, 2021. "Optimization and control of battery-flywheel compound energy storage system during an electric vehicle braking," Energy, Elsevier, vol. 226(C).
    2. Xiao, Feng & Yang, Zhengguang & Wei, Bo, 2024. "Distributed fixed-time cooperative control for flywheel energy storage systems with state-of-energy constraints," Energy, Elsevier, vol. 293(C).
    3. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    4. Abo-Elyousr, Farag K. & Guerrero, Josep M. & Ramadan, Haitham S., 2021. "Prospective hydrogen-based microgrid systems for optimal leverage via metaheuristic approaches," Applied Energy, Elsevier, vol. 300(C).
    5. Dario Pelosi & Michela Longo & Dario Zaninelli & Linda Barelli, 2023. "Experimental Investigation of Fast−Charging Effect on Aging of Electric Vehicle Li−Ion Batteries," Energies, MDPI, vol. 16(18), pages 1-14, September.
    6. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    7. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    8. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).
    9. Al kez, Dlzar & Foley, Aoife M. & McIlwaine, Neil & Morrow, D. John & Hayes, Barry P. & Zehir, M. Alparslan & Mehigan, Laura & Papari, Behnaz & Edrington, Chris S. & Baran, Mesut, 2020. "A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation," Energy, Elsevier, vol. 205(C).
    10. Qiu, Yibin & Li, Qi & Wang, Tianhong & Yin, Liangzhen & Chen, Weirong & Liu, Hong, 2022. "Optimal planning of Cross-regional hydrogen energy storage systems considering the uncertainty," Applied Energy, Elsevier, vol. 326(C).
    11. Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
    12. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    13. Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
    14. He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
    2. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    3. Barelli, L. & Bidini, G. & Bonucci, F., 2016. "A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration," Energy, Elsevier, vol. 113(C), pages 831-844.
    4. Kondoh, Junji & Funamoto, Takuji & Nakanishi, Taisuke & Arai, Ryohei, 2018. "Energy characteristics of a fixed-speed flywheel energy storage system with direct grid-connection," Energy, Elsevier, vol. 165(PB), pages 701-708.
    5. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    8. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    9. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    10. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 212(C), pages 919-930.
    13. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    14. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    15. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    16. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    17. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    18. Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
    19. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    20. Nation, Deju D. & Heggs, Peter J. & Dixon-Hardy, Darron W., 2017. "Modelling and simulation of a novel Electrical Energy Storage (EES) Receiver for Solar Parabolic Trough Collector (PTC) power plants," Applied Energy, Elsevier, vol. 195(C), pages 950-973.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:937-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.