IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2458-d357675.html
   My bibliography  Save this article

A Review of Pulsed Current Technique for Lithium-ion Batteries

Author

Listed:
  • Xinrong Huang

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Yuanyuan Li

    (School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Anirudh Budnar Acharya

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Xin Sui

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Jinhao Meng

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Remus Teodorescu

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Daniel-Ioan Stroe

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Lithium-ion (Li-ion) batteries have been competitive in Electric Vehicles (EVs) due to their high energy density and long lifetime. However, there are still issues, which have to be solved, related to the fast-charging capability of EVs. The pulsed current charging technique is expected to improve the lifetime, charging speed, charging/discharging capacity, and the temperature rising of Li-ion batteries. However, the impact of the pulsed current parameters (i.e., frequency, duty cycle, and magnitude) on characteristics of Li-ion batteries has not been fully understood yet. This paper summarizes the existing pulsed current modes, which are positive Pulsed Current Mode (PPC) and its five extended modes, and Negative Pulsed Current (NPC) mode and its three extended modes. An overview of the impact of pulsed current techniques on the performance of Li-ion batteries is presented. Then the main impact factors of the PPC strategy and the NPC strategy are analyzed and discussed. The weight of these impact factors on lifetime, charging speed, charging/discharging capacity, and the temperature rising of batteries is presented, which provides guidance to design advanced charging/discharging strategies as well as to determine future research gaps.

Suggested Citation

  • Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2458-:d:357675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    2. J. M. Amanor-Boadu & A. Guiseppi-Elie & E. Sánchez-Sinencio, 2018. "The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Meng Di Yin & Jeonghun Cho & Daejin Park, 2016. "Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve," Energies, MDPI, vol. 9(3), pages 1-20, March.
    4. Abdel Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Mantels, Bart & Mulder, Grietus & Van den Bossche, Peter & Van Mierlo, Joeri, 2015. "Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process," Applied Energy, Elsevier, vol. 152(C), pages 143-155.
    5. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Guo & Yaqi Li & Kjeld Pedersen & Daniel-Ioan Stroe, 2021. "Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview," Energies, MDPI, vol. 14(17), pages 1-22, August.
    2. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Bayati & Mehrdad Abedi & Maryam Farahmandrad & Gevork B. Gharehpetian & Kambiz Tehrani, 2021. "Important Technical Considerations in Design of Battery Chargers of Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    4. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    5. Guangwei Chen & Zhitao Liu & Hongye Su, 2020. "An Optimal Fast-Charging Strategy for Lithium-Ion Batteries via an Electrochemical–Thermal Model with Intercalation-Induced Stresses and Film Growth," Energies, MDPI, vol. 13(9), pages 1-16, May.
    6. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    7. Ghassemi, Alireza & Chakraborty Banerjee, Parama & Hollenkamp, Anthony F. & Zhang, Zhe & Bahrani, Behrooz, 2021. "Effects of alternating current on Li-ion battery performance: Monitoring degradative processes with in-situ characterization techniques," Applied Energy, Elsevier, vol. 284(C).
    8. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    9. María Garcés Quílez & Mohamed Abdel-Monem & Mohamed El Baghdadi & Yang Yang & Joeri Van Mierlo & Omar Hegazy, 2018. "Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    10. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    11. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    12. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    13. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    14. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    15. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    16. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    17. Ying Yang & Zhenpo Wang & Shuo Wang & Ni Lin, 2022. "An Investigation of Opportunity Charging with Hybrid Energy Storage System on Electric Bus with Two-Speed Transmission," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    18. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
    19. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Georgios Salagiannis & Emmanuel Tatakis, 2023. "Review on Non-Isolated Multiport Converters for Residential DC Microgrids," Energies, MDPI, vol. 17(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2458-:d:357675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.