IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p209-d65951.html
   My bibliography  Save this article

Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

Author

Listed:
  • Meng Di Yin

    (School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Korea)

  • Jeonghun Cho

    (School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Korea)

  • Daejin Park

    (School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Korea)

Abstract

The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT). The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC) charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

Suggested Citation

  • Meng Di Yin & Jeonghun Cho & Daejin Park, 2016. "Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve," Energies, MDPI, vol. 9(3), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:209-:d:65951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    2. Burke, Andrew & Miller, Marshall & Zhao, Hemgbing, 2012. "Fast Charging Tests (up to 6C) of Lithium Titanate Cells and Modules: Electrical and Thermal Response," Institute of Transportation Studies, Working Paper Series qt63286026, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    2. J. M. Amanor-Boadu & A. Guiseppi-Elie & E. Sánchez-Sinencio, 2018. "The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
    4. Mahdi Bayati & Mehrdad Abedi & Maryam Farahmandrad & Gevork B. Gharehpetian & Kambiz Tehrani, 2021. "Important Technical Considerations in Design of Battery Chargers of Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.
    5. Ricardo Velho & Miguel Beirão & Maria Do Rosário Calado & José Pombo & João Fermeiro & Sílvio Mariano, 2017. "Management System for Large Li-Ion Battery Packs with a New Adaptive Multistage Charging Method," Energies, MDPI, vol. 10(5), pages 1-21, May.
    6. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    3. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    5. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    6. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    7. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    8. Nicolás Müller & Samir Kouro & Pericle Zanchetta & Patrick Wheeler & Gustavo Bittner & Francesco Girardi, 2019. "Energy Storage Sizing Strategy for Grid-Tied PV Plants under Power Clipping Limitations," Energies, MDPI, vol. 12(9), pages 1-17, May.
    9. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    10. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    11. Angelo Maiorino & Adrián Mota-Babiloni & Fabio Petruzziello & Manuel Gesù Del Duca & Andrea Ariano & Ciro Aprea, 2022. "A Comprehensive Energy Model for an Optimal Design of a Hybrid Refrigerated Van," Energies, MDPI, vol. 15(13), pages 1-23, July.
    12. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Raúl Simarro, 2017. "Using a Multiobjective Approach to Compare Multiple Design Alternatives—An Application to Battery Dynamic Model Tuning," Energies, MDPI, vol. 10(7), pages 1-19, July.
    13. Saleh Mohammed Shahriar & Erphan A. Bhuiyan & Md. Nahiduzzaman & Mominul Ahsan & Julfikar Haider, 2022. "State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence," Energies, MDPI, vol. 15(21), pages 1-26, October.
    14. Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Pierluigi Siano & Ramesh Krishnamoorthy & Raghu Selvaraj, 2017. "Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    15. Jaime de la Peña Llerandi & Carlos Sancho de Mingo & José Carpio Ibáñez, 2019. "Continuous Battery Health Diagnosis by On-Line Internal Resistance Measuring," Energies, MDPI, vol. 12(14), pages 1-13, July.
    16. Yuechen Liu & Linjing Zhang & Jiuchun Jiang & Shaoyuan Wei & Sijia Liu & Weige Zhang, 2017. "A Data-Driven Learning-Based Continuous-Time Estimation and Simulation Method for Energy Efficiency and Coulombic Efficiency of Lithium Ion Batteries," Energies, MDPI, vol. 10(5), pages 1-15, April.
    17. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    18. Rahman, Ashikur & Lin, Xianke, 2022. "Li-ion battery individual electrode state of charge and degradation monitoring using battery casing through auto curve matching for standard CCCV charging profile," Applied Energy, Elsevier, vol. 321(C).
    19. Shahid Hussain & Mohamed A. Ahmed & Ki-Beom Lee & Young-Chon Kim, 2020. "Fuzzy Logic Weight Based Charging Scheme for Optimal Distribution of Charging Power among Electric Vehicles in a Parking Lot," Energies, MDPI, vol. 13(12), pages 1-27, June.
    20. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:209-:d:65951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.