IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1795-d230300.html
   My bibliography  Save this article

Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954

Author

Listed:
  • Tommaso Campi

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Silvano Cruciani

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Francesca Maradei

    (Department of Astronautics, Electrical and Energetics Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Mauro Feliziani

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

The Society of Automotive Engineers (SAE) Recommended Practice (RP) J2954 (November 2017) was recently published to standardize the wireless power transfer (WPT) technology to recharge the battery of an electric vehicle (EV). The SAE J2954 RP establishes criteria for interoperability, electromagnetic compatibility (EMC), electromagnetic field (EMF) safety, etc. The aim of this study was to predict the magnetic field behavior inside and outside an EV during wireless charging using the design criteria of SAE RP J2954. Analyzing the worst case configurations of WPT coils and EV bodyshell by a sophisticated software tool based on the finite element method (FEM) that takes into account the field reflection and refraction of the metal EV bodyshell, it is possible to numerically assess the magnetic field levels in the environment. The investigation was performed considering the worst case configuration—a small city car with a Class 2 WPT system of 7.7 kVA with WPT coils with maximum admissible ground clearance and offset. The results showed that the reference level (RL) of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines in terms of magnetic flux density was exceeded under and beside the EV. To mitigate the magnetic field, the currents flowing through the WPT coils were varied using the inductor-capacitor-capacitor (LCC) compensation instead of the traditional series-series (SS) compensation. The corresponding calculated field was compliant with the 2010 ICNIRP RL and presented a limited exceedance of the 1998 ICNIRP RL. Finally, the influence of the body width on the magnetic field behavior adopting maximum offset was investigated, demonstrating that the magnetic field emission in the environment increased as the ground clearance increased and as the body width decreased.

Suggested Citation

  • Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1795-:d:230300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Ann & Woo-Young Lee & Gyu-Yeong Choe & Byoung Kuk Lee, 2019. "Integrated Control Strategy for Inductive Power Transfer Systems with Primary-Side LCC Network for Load-Average Efficiency Improvement," Energies, MDPI, vol. 12(2), pages 1-13, January.
    2. Zhengchao Yan & Yiming Zhang & Baowei Song & Kehan Zhang & Tianze Kan & Chris Mi, 2019. "An LCC-P Compensated Wireless Power Transfer System with a Constant Current Output and Reduced Receiver Size," Energies, MDPI, vol. 12(1), pages 1-14, January.
    3. Valerio De Santis & Tommaso Campi & Silvano Cruciani & Ilkka Laakso & Mauro Feliziani, 2018. "Assessment of the Induced Electric Fields in a Carbon-Fiber Electrical Vehicle Equipped with a Wireless Power Transfer System," Energies, MDPI, vol. 11(3), pages 1-9, March.
    4. Li Zhai & Guangyuan Zhong & Yu Cao & Guixing Hu & Xiang Li, 2019. "Research on Magnetic Field Distribution and Characteristics of a 3.7 kW Wireless Charging System for Electric Vehicles under Offset," Energies, MDPI, vol. 12(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive," Energies, MDPI, vol. 13(21), pages 1-12, October.
    2. Ying Liu & Jiantao Zhang & Chunbo Zhu & Ching Chuen Chan, 2022. "A Study on the Safety Analysis of an Inductive Power Transfer System for Kitchen Appliances," Energies, MDPI, vol. 15(14), pages 1-16, July.
    3. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    4. Seokhyeon Son & Seongho Woo & Haerim Kim & Jangyong Ahn & Sungryul Huh & Sanguk Lee & Seungyoung Ahn, 2022. "Shielding Sensor Coil to Reduce the Leakage Magnetic Field and Detect the Receiver Position in Wireless Power Transfer System for Electric Vehicle," Energies, MDPI, vol. 15(7), pages 1-15, March.
    5. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    7. Germana Trentadue & Rosanna Pinto & Marco Zanni & Harald Scholz & Konstantinos Pliakostathis & Giorgio Martini, 2020. "Low Frequency Magnetic Fields Emitted by High-Power Charging Systems," Energies, MDPI, vol. 13(7), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    3. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    4. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System," Energies, MDPI, vol. 13(10), pages 1-14, May.
    5. SangWook Park, 2020. "Investigating human exposure to a practical wireless power transfer system using and the effect about key parameters of dosimetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    6. Zhipeng Guan & Bo Zhang & Dongyuan Qiu, 2019. "Influence of Asymmetric Coil Parameters on the Output Power Characteristics of Wireless Power Transfer Systems and Their Applications," Energies, MDPI, vol. 12(7), pages 1-19, March.
    7. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2024. "Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems," Energies, MDPI, vol. 17(17), pages 1-15, August.
    8. Kangheng Qiao & Enguo Rong & Pan Sun & Xiaochen Zhang & Jun Sun, 2022. "Design of LCC-P Constant Current Topology Parameters for AUV Wireless Power Transfer," Energies, MDPI, vol. 15(14), pages 1-13, July.
    9. Valerio De Santis & Luca Giaccone & Fabio Freschi, 2021. "Influence of Posture and Coil Position on the Safety of a WPT System While Recharging a Compact EV," Energies, MDPI, vol. 14(21), pages 1-10, November.
    10. Ziwei Liang & Jianqiang Wang & Yiming Zhang & Jiuchun Jiang & Zhengchao Yan & Chris Mi, 2019. "A Compact Spatial Free-Positioning Wireless Charging System for Consumer Electronics Using a Three-Dimensional Transmitting Coil," Energies, MDPI, vol. 12(8), pages 1-10, April.
    11. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    12. Manh Tuan Tran & Sarath Thekkan & Hakan Polat & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2023. "Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example," Energies, MDPI, vol. 16(7), pages 1-42, March.
    13. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive," Energies, MDPI, vol. 13(21), pages 1-12, October.
    14. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    15. Nadir Benalia & Kouider Laroussi & Idriss Benlaloui & Abdellah Kouzou & Abed-Djebar Bensalah & Ralph Kennel & Mohamed Abdelrahem, 2023. "Optimized Power Pads for Charging Electric Vehicles Based on a New Rectangular Spiral Shape Design," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    16. Lu Zhang & Huan Li & Qiang Guo & Shiyun Xie & Yi Yang, 2022. "Research on Constant Voltage/Current Output of LCC–S Envelope Modulation Wireless Power Transfer System," Energies, MDPI, vol. 15(4), pages 1-16, February.
    17. Srinivas Nunna & Maxime Maghe & Seyed Mousa Fakhrhoseini & Bhargav Polisetti & Minoo Naebe, 2018. "A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production," Energies, MDPI, vol. 11(5), pages 1-10, May.
    18. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    19. Li Zhai & Guangyuan Zhong & Yu Cao & Guixing Hu & Xiang Li, 2019. "Research on Magnetic Field Distribution and Characteristics of a 3.7 kW Wireless Charging System for Electric Vehicles under Offset," Energies, MDPI, vol. 12(3), pages 1-21, January.
    20. Junqing Lan & Akimasa Hirata, 2020. "Effect of Loudspeakers on the In Situ Electric Field in a Driver Body Model Exposed to an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1795-:d:230300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.