IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1145-d144563.html
   My bibliography  Save this article

A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production

Author

Listed:
  • Srinivas Nunna

    (Institute for Frontier Materials, Carbon Nexus, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia)

  • Maxime Maghe

    (Institute for Frontier Materials, Carbon Nexus, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia)

  • Seyed Mousa Fakhrhoseini

    (Institute for Frontier Materials, Carbon Nexus, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia)

  • Bhargav Polisetti

    (Institute for Frontier Materials, Carbon Nexus, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia)

  • Minoo Naebe

    (Institute for Frontier Materials, Carbon Nexus, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia)

Abstract

Process parameters, especially in the thermal stabilization of polyacrylonitrile (PAN) fibers, play a critical role in controlling the cost and properties of the resultant carbon fibers. This study aimed to efficiently handle the energy expense areas during carbon fiber manufacturing without reducing the quality of carbon fibers. We introduced a new parameter (recirculation fan frequency) in the stabilization stage and studied its influence on the evolution of the structure and properties of fibers. Initially, the progress of the cyclization reaction in the fiber cross-sections with respect to fan frequencies (35, 45, and 60 Hz) during stabilization was analyzed using the Australian Synchrotron-high resolution infrared imaging technique. A parabolic trend in the evolution of cyclic structures was observed in the fiber cross-sections during the initial stages of stabilization; however, it was transformed to a uniform trend at the end of stabilization for all fan frequencies. Simultaneously, the microstructure and property variations at each stage of manufacturing were assessed. We identified nominal structural variations with respect to fan frequencies in the intermediate stages of thermal stabilization, which were reduced during the carbonization process. No statistically significant variations were observed between the tensile properties of fibers. These observations suggested that, when using a lower fan frequency (35 Hz), it was possible to manufacture carbon fibers with a similar performance to those produced using a higher fan frequency (60 Hz). As a result, this study provided an opportunity to reduce the energy consumption during carbon fiber manufacturing.

Suggested Citation

  • Srinivas Nunna & Maxime Maghe & Seyed Mousa Fakhrhoseini & Bhargav Polisetti & Minoo Naebe, 2018. "A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production," Energies, MDPI, vol. 11(5), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1145-:d:144563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valerio De Santis & Tommaso Campi & Silvano Cruciani & Ilkka Laakso & Mauro Feliziani, 2018. "Assessment of the Induced Electric Fields in a Carbon-Fiber Electrical Vehicle Equipped with a Wireless Power Transfer System," Energies, MDPI, vol. 11(3), pages 1-9, March.
    2. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Ma & Chaogang Huang & Henglin Xiao, 2018. "Functionality Study on Light-Weight Ecological Substrate," Energies, MDPI, vol. 11(12), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. SangWook Park, 2020. "Investigating human exposure to a practical wireless power transfer system using and the effect about key parameters of dosimetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    3. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2024. "Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems," Energies, MDPI, vol. 17(17), pages 1-15, August.
    4. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    5. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    6. Valerio De Santis & Luca Giaccone & Fabio Freschi, 2021. "Influence of Posture and Coil Position on the Safety of a WPT System While Recharging a Compact EV," Energies, MDPI, vol. 14(21), pages 1-10, November.
    7. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    8. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
    9. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    10. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive," Energies, MDPI, vol. 13(21), pages 1-12, October.
    11. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    12. Nadir Benalia & Kouider Laroussi & Idriss Benlaloui & Abdellah Kouzou & Abed-Djebar Bensalah & Ralph Kennel & Mohamed Abdelrahem, 2023. "Optimized Power Pads for Charging Electric Vehicles Based on a New Rectangular Spiral Shape Design," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    13. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
    14. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System," Energies, MDPI, vol. 13(10), pages 1-14, May.
    15. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    16. Li Zhai & Guangyuan Zhong & Yu Cao & Guixing Hu & Xiang Li, 2019. "Research on Magnetic Field Distribution and Characteristics of a 3.7 kW Wireless Charging System for Electric Vehicles under Offset," Energies, MDPI, vol. 12(3), pages 1-21, January.
    17. Junqing Lan & Akimasa Hirata, 2020. "Effect of Loudspeakers on the In Situ Electric Field in a Driver Body Model Exposed to an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1145-:d:144563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.