IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4233-d1463166.html
   My bibliography  Save this article

Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems

Author

Listed:
  • Silvano Cruciani

    (Department of Industrial Engineering, Tor Vergata University of Rome, 00133 Rome, Italy)

  • Tommaso Campi

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Francesca Maradei

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Mauro Feliziani

    (Department of Industrial and Information Engineering, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

This paper deals with the mitigation of magnetic field levels produced by a wireless power transfer (WPT) system to recharge the battery of an electric vehicle (EV). In this work, an array of active coils surrounding the WPT coils is proposed as a mitigation technique. The theory and new methodological aspects are the focus of the paper. Magnetic field levels in the environment are calculated numerically without and with the presence of an array of active coils in a stationary WPT system for automotive applications. By the proposed mitigation method, the field levels beside the vehicle are significantly reduced and comply with the reference levels (RLs) of the ICNIRP 2010 guidelines for human exposure to electromagnetic fields and the magnetic flux density limits proposed by ISO 14117 for electromagnetic interference (EMI) in cardiac implantable electronic devices (CIEDs).

Suggested Citation

  • Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2024. "Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems," Energies, MDPI, vol. 17(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4233-:d:1463166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valerio De Santis & Tommaso Campi & Silvano Cruciani & Ilkka Laakso & Mauro Feliziani, 2018. "Assessment of the Induced Electric Fields in a Carbon-Fiber Electrical Vehicle Equipped with a Wireless Power Transfer System," Energies, MDPI, vol. 11(3), pages 1-9, March.
    2. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System," Energies, MDPI, vol. 13(10), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    3. SangWook Park, 2020. "Investigating human exposure to a practical wireless power transfer system using and the effect about key parameters of dosimetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    4. Valerio De Santis & Luca Giaccone & Fabio Freschi, 2021. "Influence of Posture and Coil Position on the Safety of a WPT System While Recharging a Compact EV," Energies, MDPI, vol. 14(21), pages 1-10, November.
    5. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    6. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive," Energies, MDPI, vol. 13(21), pages 1-12, October.
    7. Nadir Benalia & Kouider Laroussi & Idriss Benlaloui & Abdellah Kouzou & Abed-Djebar Bensalah & Ralph Kennel & Mohamed Abdelrahem, 2023. "Optimized Power Pads for Charging Electric Vehicles Based on a New Rectangular Spiral Shape Design," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    8. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
    9. Srinivas Nunna & Maxime Maghe & Seyed Mousa Fakhrhoseini & Bhargav Polisetti & Minoo Naebe, 2018. "A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production," Energies, MDPI, vol. 11(5), pages 1-10, May.
    10. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System," Energies, MDPI, vol. 13(10), pages 1-14, May.
    11. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    12. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2022. "Electromagnetic Interference in a Buried Multiconductor Cable Due to a Dynamic Wireless Power Transfer System," Energies, MDPI, vol. 15(5), pages 1-14, February.
    13. Li Zhai & Guangyuan Zhong & Yu Cao & Guixing Hu & Xiang Li, 2019. "Research on Magnetic Field Distribution and Characteristics of a 3.7 kW Wireless Charging System for Electric Vehicles under Offset," Energies, MDPI, vol. 12(3), pages 1-21, January.
    14. Junqing Lan & Akimasa Hirata, 2020. "Effect of Loudspeakers on the In Situ Electric Field in a Driver Body Model Exposed to an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4233-:d:1463166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.