IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5249-d867019.html
   My bibliography  Save this article

Design of LCC-P Constant Current Topology Parameters for AUV Wireless Power Transfer

Author

Listed:
  • Kangheng Qiao

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China)

  • Enguo Rong

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China)

  • Pan Sun

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China)

  • Xiaochen Zhang

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China)

  • Jun Sun

    (School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China)

Abstract

The wireless power transmission (WPT) of an autonomous underwater vehicle (AUV) tends to have non-negligible eddy current loss with increasing frequency or coil current due to the conductivity of seawater. In this paper, the inductor-capacitor-capacitor and parallel (LCC-P) topology and the magnetic coupler with an H-shaped receiver structure are chosen to achieve a compact system on the receiving side. The conditions for constant current output of the LCC-P topology are analyzed based on the cascaded circuit analysis method. The traditional parameter design method does not consider the influence of eddy current loss on the system circuit model, by introducing the equivalent eddy current loss resistance at both the transmitting side and receiving side, a modified circuit model of the WPT system in the seawater condition was obtained. Afterward, a nonlinear programming model with the optimal efficiency of the constant current mode as the objective function is established, and the genetic algorithm is used to obtain the optimal system parameters. An underwater AUV-WPT prototype was built and the finite element simulation and experimental results verified the theoretical analysis.

Suggested Citation

  • Kangheng Qiao & Enguo Rong & Pan Sun & Xiaochen Zhang & Jun Sun, 2022. "Design of LCC-P Constant Current Topology Parameters for AUV Wireless Power Transfer," Energies, MDPI, vol. 15(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5249-:d:867019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengchao Yan & Yiming Zhang & Baowei Song & Kehan Zhang & Tianze Kan & Chris Mi, 2019. "An LCC-P Compensated Wireless Power Transfer System with a Constant Current Output and Reduced Receiver Size," Energies, MDPI, vol. 12(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Kindl & Tomas Kavalir & Jiri Sika & Jan Hnatik & Michal Krizek & Michal Frivaldsky, 2022. "Wireless Power Transmission System for Powering Rotating Parts of Automatic Machineries," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. Zhipeng Guan & Bo Zhang & Dongyuan Qiu, 2019. "Influence of Asymmetric Coil Parameters on the Output Power Characteristics of Wireless Power Transfer Systems and Their Applications," Energies, MDPI, vol. 12(7), pages 1-19, March.
    3. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Ziwei Liang & Jianqiang Wang & Yiming Zhang & Jiuchun Jiang & Zhengchao Yan & Chris Mi, 2019. "A Compact Spatial Free-Positioning Wireless Charging System for Consumer Electronics Using a Three-Dimensional Transmitting Coil," Energies, MDPI, vol. 12(8), pages 1-10, April.
    5. Manh Tuan Tran & Sarath Thekkan & Hakan Polat & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2023. "Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example," Energies, MDPI, vol. 16(7), pages 1-42, March.
    6. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    7. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
    8. Lu Zhang & Huan Li & Qiang Guo & Shiyun Xie & Yi Yang, 2022. "Research on Constant Voltage/Current Output of LCC–S Envelope Modulation Wireless Power Transfer System," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5249-:d:867019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.