IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2493-d781656.html
   My bibliography  Save this article

Shielding Sensor Coil to Reduce the Leakage Magnetic Field and Detect the Receiver Position in Wireless Power Transfer System for Electric Vehicle

Author

Listed:
  • Seokhyeon Son

    (Division of Future Vehicle, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Seongho Woo

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Haerim Kim

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Jangyong Ahn

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Sungryul Huh

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Sanguk Lee

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

  • Seungyoung Ahn

    (The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea)

Abstract

This paper proposes a shielding sensor (SS) coil to solve the misalignment issue and the leakage magnetic field issue of the wireless power transfer (WPT) system for electric vehicles (EVs). The misalignment issue and leakage magnetic field issue must be solved because they can cause problems with power transfer efficiency reduction and electronic device malfunction. To solve these problems, the proposed SS coils are located over the Tx coil. The newly created mutual inductance between the Tx coil and the SS coil is used to detect the misalignment of the receiver in the Tx coil. In addition, the current phase of the SS coil is adjusted through impedance control of the SS coil to reduce the leakage magnetic field. The proposed SS coils were applied to the standard SAE J2954 model for the wireless charging of an EV. The WPT3/Z2 model of SAE J2954 with output power of 10 kW was simulated to compare the shielding effect according to the power transfer efficiency, and it was confirmed that a shielding effect of 76% was shown under the condition of a 3% reduction in the power transfer efficiency. In addition, the occurrence and direction of the misalignment between the receiver and the Tx coil were confirmed by using the tendency of mutual inductance between each SS coil and the Tx coil. In addition, as in the simulation result, the shielding effect and tendency were confirmed in an experiment conducted with the output power downscaled to 500 W.

Suggested Citation

  • Seokhyeon Son & Seongho Woo & Haerim Kim & Jangyong Ahn & Sungryul Huh & Sanguk Lee & Seungyoung Ahn, 2022. "Shielding Sensor Coil to Reduce the Leakage Magnetic Field and Detect the Receiver Position in Wireless Power Transfer System for Electric Vehicle," Energies, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2493-:d:781656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
    2. Karam Hwang & Jaehyoung Park & Dongwook Kim & Hyun Ho Park & Jong Hwa Kwon & Sang Il Kwak & Seungyoung Ahn, 2015. "Autonomous Coil Alignment System Using Fuzzy Steering Control for Electric Vehicles with Dynamic Wireless Charging," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Jin Park, 2022. "Next-Generation Wireless Charging Systems for Mobile Devices," Energies, MDPI, vol. 15(9), pages 1-4, April.
    2. Seongho Woo & Yujun Shin & Changmin Lee & Jaewon Rhee & Jangyong Ahn & Jungick Moon & Seokhyeon Son & Sanguk Lee & Hongseok Kim & Seungyoung Ahn, 2022. "Minimizing Leakage Magnetic Field of Wireless Power Transfer Systems Using Phase Difference Control," Energies, MDPI, vol. 15(21), pages 1-18, November.
    3. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    2. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Silvano Cruciani & Tommaso Campi & Francesca Maradei & Mauro Feliziani, 2020. "Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive," Energies, MDPI, vol. 13(21), pages 1-12, October.
    4. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    5. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    6. Ying Liu & Jiantao Zhang & Chunbo Zhu & Ching Chuen Chan, 2022. "A Study on the Safety Analysis of an Inductive Power Transfer System for Kitchen Appliances," Energies, MDPI, vol. 15(14), pages 1-16, July.
    7. Germana Trentadue & Rosanna Pinto & Marco Zanni & Harald Scholz & Konstantinos Pliakostathis & Giorgio Martini, 2020. "Low Frequency Magnetic Fields Emitted by High-Power Charging Systems," Energies, MDPI, vol. 13(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2493-:d:781656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.