IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2781-d365754.html
   My bibliography  Save this article

A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation

Author

Listed:
  • Yue Zhou

    (FEMTO-ST Institute, FCLAB, Université Bourgogne Franche-Comté, UTBM, CNRS, Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Hussein Obeid

    (FEMTO-ST Institute, FCLAB, Université Bourgogne Franche-Comté, UTBM, CNRS, Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Salah Laghrouche

    (FEMTO-ST Institute, FCLAB, Université Bourgogne Franche-Comté, UTBM, CNRS, Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Mickael Hilairet

    (FEMTO-ST Institute, FCLAB, Université Bourgogne Franche-Comté, UTBM, CNRS, Rue Ernest Thierry Mieg, F-90000 Belfort, France)

  • Abdesslem Djerdir

    (FEMTO-ST Institute, FCLAB, Université Bourgogne Franche-Comté, UTBM, CNRS, Rue Ernest Thierry Mieg, F-90000 Belfort, France)

Abstract

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.

Suggested Citation

  • Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2781-:d:365754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Haibo Zhang & Xiaoming Liu & Honghai Ji & Zhongsheng Hou & Lingling Fan, 2019. "Multi-Agent-Based Data-Driven Distributed Adaptive Cooperative Control in Urban Traffic Signal Timing," Energies, MDPI, vol. 12(7), pages 1-19, April.
    4. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954," Energies, MDPI, vol. 12(9), pages 1-24, May.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    6. Matteo Moncecchi & Claudio Brivio & Stefano Mandelli & Marco Merlo, 2020. "Battery Energy Storage Systems in Microgrids: Modeling and Design Criteria," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Xiaopeng Tang & Ke Yao & Boyang Liu & Wengui Hu & Furong Gao, 2018. "Long-Term Battery Voltage, Power, and Surface Temperature Prediction Using a Model-Based Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    8. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
    9. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    10. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    11. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
    12. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Yu Wang & Zhongping Yang & Feng Li, 2018. "Optimization of Energy Management Strategy and Sizing in Hybrid Storage System for Tram," Energies, MDPI, vol. 11(4), pages 1-17, March.
    14. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    15. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    16. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    2. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    3. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    4. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    7. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    8. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    9. Gang Xiao & Qihong Chen & Peng Xiao & Liyan Zhang & Quansen Rong, 2022. "Multiobjective Optimization for a Li-Ion Battery and Supercapacitor Hybrid Energy Storage Electric Vehicle," Energies, MDPI, vol. 15(8), pages 1-13, April.
    10. Miroslaw Lewandowski & Marek Orzylowski, 2020. "Novel Time Method of Identification of Fractional Model Parameters of Supercapacitor," Energies, MDPI, vol. 13(11), pages 1-17, June.
    11. Syed Naeem Haider & Qianchuan Zhao & Xueliang Li, 2020. "Cluster-Based Prediction for Batteries in Data Centers," Energies, MDPI, vol. 13(5), pages 1-17, March.
    12. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    13. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    14. Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
    15. Cheng Siong Chin & Zuchang Gao & Joel Hay King Chiew & Caizhi Zhang, 2018. "Nonlinear Temperature-Dependent State Model of Cylindrical LiFePO 4 Battery for Open-Circuit Voltage, Terminal Voltage and State-of-Charge Estimation with Extended Kalman Filter," Energies, MDPI, vol. 11(9), pages 1-28, September.
    16. Mingjie Zhao & Junhui Shi & Cheng Lin & Junzhi Zhang, 2018. "Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission," Energies, MDPI, vol. 11(2), pages 1-16, February.
    17. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    18. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    19. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2781-:d:365754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.