IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2953-d1105747.html
   My bibliography  Save this article

Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example

Author

Listed:
  • Manh Tuan Tran

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Sarath Thekkan

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium)

  • Hakan Polat

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Dai-Duong Tran

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

Along with the technology boom regarding electric vehicles such as lithium-ion batteries, electric motors, and plug-in charging systems, inductive power transfer (IPT) systems have gained more attention from academia and industry in recent years. This article presents a review of the state-of-the-art development of IPT systems, with a focus on low-voltage and high-current electric mobility applications. The fundamental theory, compensation topologies, magnetic coupling structures, power electronic architectures, and control methods are discussed and further considered in terms of several aspects, including efficiency, coil misalignments, and output regulation capability. A 3D finite element software (Ansys Maxwell) is used to validate the magnetic coupler performance. In addition, a 2.5 kW 400/48 V IPT system is proposed to address the challenges of low-voltage and high-current wireless charging systems. In this design, an asymmetrical double-sided LCC compensation topology and a passive current balancing method are proposed to provide excellent current sharing capability in the dual-receiver structures under both resonant component mismatch and misalignment conditions. Finally, the performance of the proposed method is verified by MATLAB/PSIM simulation results.

Suggested Citation

  • Manh Tuan Tran & Sarath Thekkan & Hakan Polat & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2023. "Inductive Wireless Power Transfer Systems for Low-Voltage and High-Current Electric Mobility Applications: Review and Design Example," Energies, MDPI, vol. 16(7), pages 1-42, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2953-:d:1105747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengchao Yan & Yiming Zhang & Baowei Song & Kehan Zhang & Tianze Kan & Chris Mi, 2019. "An LCC-P Compensated Wireless Power Transfer System with a Constant Current Output and Reduced Receiver Size," Energies, MDPI, vol. 12(1), pages 1-14, January.
    2. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    2. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    4. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    6. Zhipeng Guan & Bo Zhang & Dongyuan Qiu, 2019. "Influence of Asymmetric Coil Parameters on the Output Power Characteristics of Wireless Power Transfer Systems and Their Applications," Energies, MDPI, vol. 12(7), pages 1-19, March.
    7. Kangheng Qiao & Enguo Rong & Pan Sun & Xiaochen Zhang & Jun Sun, 2022. "Design of LCC-P Constant Current Topology Parameters for AUV Wireless Power Transfer," Energies, MDPI, vol. 15(14), pages 1-13, July.
    8. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    9. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Jianfeng Hong & Mingjie Guan & Zaifa Lin & Qiu Fang & Wei Wu & Wenxiang Chen, 2019. "Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment," Energies, MDPI, vol. 12(12), pages 1-17, June.
    12. Li, Lantian & Wang, Zhenpo & Gao, Feng & Wang, Shuo & Deng, Junjun, 2020. "A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger," Applied Energy, Elsevier, vol. 260(C).
    13. Niu, Songyan & Yu, Hang & Niu, Shuangxia & Jian, Linni, 2020. "Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention," Applied Energy, Elsevier, vol. 275(C).
    14. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    15. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    16. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    17. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    18. Gang Chen & Dawei Hu & Steven Chien & Lei Guo & Mingzheng Liu, 2020. "Optimizing Wireless Charging Locations for Battery Electric Bus Transit with a Genetic Algorithm," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    19. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    20. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2953-:d:1105747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.