IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1747-d229353.html
   My bibliography  Save this article

A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS

Author

Listed:
  • Ajay Gambhir

    (Grantham Institute, Imperial College London, South Kensington SW7 2AZ, UK)

  • Isabela Butnar

    (Energy Institute, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

  • Pei-Hao Li

    (Energy Institute, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

  • Pete Smith

    (Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK)

  • Neil Strachan

    (Energy Institute, University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK)

Abstract

This paper reviews the many criticisms that Integrated Assessment Models (IAMs)—the bedrock of mitigation analysis—have received in recent years. Critics have asserted that there is a lack of transparency around model structures and input assumptions, a lack of credibility in those input assumptions that are made visible, an over-reliance on particular technologies and an inadequate representation of real-world policies and processes such as innovation and behaviour change. The paper then reviews the proposals and actions that follow from these criticisms, which fall into three broad categories: scrap the models and use other techniques to set out low-carbon futures; transform them by improving their representation of real-world processes and their transparency; and supplement them with other models and approaches. The article considers the implications of each proposal, through the particular lens of how it would explore the role of a key low-carbon technology—bioenergy with carbon capture and storage (BECCS), to produce net negative emissions. The paper concludes that IAMs remain critically important in mitigation pathways analysis, because they can encompass a large number of technologies and policies in a consistent framework, but that they should increasingly be supplemented with other models and analytical approaches.

Suggested Citation

  • Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1747-:d:229353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank W. Geels & Frans Berkhout & Detlef P. van Vuuren, 2016. "Bridging analytical approaches for low-carbon transitions," Nature Climate Change, Nature, vol. 6(6), pages 576-583, June.
    2. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    3. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
    4. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    5. Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
    6. Plambeck, Erica L. & Hope, Chris & Anderson, John, 1997. "The model: Integrating the science and economics of global warming," Energy Economics, Elsevier, vol. 19(1), pages 77-101, March.
    7. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    8. Maryse Labriet & Laurent Drouet & Marc Vielle & Richard Loulou & Amit Kanudia & Alain Haurie, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Working Papers 2015.23, Fondazione Eni Enrico Mattei.
    9. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    10. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    11. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    12. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    13. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    14. Geoffrey Blanford & Elmar Kriegler & Massimo Tavoni, 2014. "Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27," Climatic Change, Springer, vol. 123(3), pages 383-396, April.
    15. Haris Doukas & Alexandros Nikas & Mikel González-Eguino & Iñaki Arto & Annela Anger-Kraavi, 2018. "From Integrated to Integrative: Delivering on the Paris Agreement," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
    16. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    17. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.
    18. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    19. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    20. Richard Rosen & Edeltraud Guenther, 2014. "The Economics of Mitigating Climate Change?," Challenge, Taylor & Francis Journals, vol. 57(4), pages 57-81.
    21. Huntington, Hillard G & Weyant, John P & Sweeney, James L, 1982. "Modeling for insights, not numbers: the experiences of the energy modeling forum," Omega, Elsevier, vol. 10(5), pages 449-462.
    22. Nicholas Stern, 2016. "Economics: Current climate models are grossly misleading," Nature, Nature, vol. 530(7591), pages 407-409, February.
    23. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao-Skirbekk, Shilpa & Currás,, 2015. "A short note on integrated assessment modeling approaches: Rejoinder to the review of “Making or breaking climate targets — The AMPERE study on staged accession scenarios for climate policy”," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 273-276.
    24. Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
    25. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    26. Nebojša Nakićenović & Nadejda Victor & Tsuneyuki Morita, 1998. "Emissions Scenarios Database and Review of Scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 95-131, December.
    27. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    28. Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.
    29. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    30. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. van Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Lebla, 2018. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Post-Print hal-01972038, HAL.
    31. Rosen, Richard A. & Guenther, Edeltraud, 2015. "The economics of mitigating climate change: What can we know?," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 93-106.
    32. Alice Larkin & Jaise Kuriakose & Maria Sharmina & Kevin Anderson, 2018. "What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations," Climate Policy, Taylor & Francis Journals, vol. 18(6), pages 690-714, July.
    33. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Corrigendum to "Modelling energy systems for developing countries": [Energy Policy 35 (2007) 3473-3482]," Energy Policy, Elsevier, vol. 35(9), pages 4764-4765, September.
    34. Tol, Richard S. J., 2002. "Welfare specifications and optimal control of climate change: an application of fund," Energy Economics, Elsevier, vol. 24(4), pages 367-376, July.
    35. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    36. Robert Socolow, 2011. "High-consequence outcomes and internal disagreements: tell us more, please," Climatic Change, Springer, vol. 108(4), pages 775-790, October.
    37. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    38. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    39. Detlef P. van Vuuren & Andries F. Hof & Mariësse A. E. van Sluisveld & Keywan Riahi, 2017. "Open discussion of negative emissions is urgently needed," Nature Energy, Nature, vol. 2(12), pages 902-904, December.
    40. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    41. Stefan Pauliuk & Anders Arvesen & Konstantin Stadler & Edgar G. Hertwich, 2017. "Industrial ecology in integrated assessment models," Nature Climate Change, Nature, vol. 7(1), pages 13-20, January.
    42. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    43. Kevin Anderson, 2015. "Talks in the city of light generate more heat," Nature, Nature, vol. 528(7583), pages 437-437, December.
    44. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Erratum: Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(6), pages 1-1, June.
    45. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    46. Steve Pye & Francis G. N. Li & James Price & Birgit Fais, 2017. "Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era," Nature Energy, Nature, vol. 2(3), pages 1-7, March.
    47. Chaturvedi, Vaibhav & Waldhoff, Stephanie & Clarke, Leon & Fujimori, Shinichiro, 2012. "What are the starting points? Evaluating base-year assumptions in the Asian Modeling Exercise," Energy Economics, Elsevier, vol. 34(S3), pages 261-271.
    48. Stefan Pfenninger, 2017. "Energy scientists must show their workings," Nature, Nature, vol. 542(7642), pages 393-393, February.
    49. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    50. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    51. Vassilis Daioglou & Jonathan C. Doelman & Elke Stehfest & Christoph Müller & Birka Wicke & Andre Faaij & Detlef P. van Vuuren, 2017. "Greenhouse gas emission curves for advanced biofuel supply chains," Nature Climate Change, Nature, vol. 7(12), pages 920-924, December.
    52. Rosen, Richard A. & Guenther, Edeltraud, 2016. "The energy policy relevance of the 2014 IPCC Working Group III report on the macro-economics of mitigating climate change," Energy Policy, Elsevier, vol. 93(C), pages 330-334.
    53. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    54. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    55. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    2. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    3. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    4. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.
    6. Giannousakis, Anastasis & Hilaire, Jérôme & Nemet, Gregory F. & Luderer, Gunnar & Pietzcker, Robert C. & Rodrigues, Renato & Baumstark, Lavinia & Kriegler, Elmar, 2021. "How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways," Energy, Elsevier, vol. 216(C).
    7. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    8. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    10. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    11. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    12. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    13. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    14. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    15. Minwoo Hyun & Aleh Cherp & Jessica Jewell & Yeong Jae Kim & Jiyong Eom, 2021. "Feasibility trade-offs in decarbonisation of power sector with high coal dependence: A case of Korea," Papers 2111.02872, arXiv.org.
    16. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    17. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    18. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    19. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1747-:d:229353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.