IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2019-02.html
   My bibliography  Save this paper

Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation

Author

Listed:
  • M. Indra al Irsyad
  • Anthony Halog
  • Rabindra Nepal

Abstract

This study estimates the impacts of four solar energy policy interventions on the photovoltaic (PV) market potential, government expenditure, economic growth, and the environment. An agent-based model is developed to capture the specific economic and institutional features of developing economies, citing Indonesia as a specific case study. We undertake a novel approach to energy modelling by combining energy system analysis, input-output analysis, life-cycle analysis, and socio-economic analysis to obtain a comprehensive and integrated impact assessment. Our results, after sensitivity analysis, call for abolishing the existing PV grant policy in the Indonesian rural electrification programs. The government, instead, should encourage the PV industry to improve production efficiency and to provide after-sales service. A 100-watt peak (Wp) PV under this policy is affordable for 33.2 percent of rural households without electricity access in 2010. Rural PV market size potentially increases to 82.4 percent with rural financing institutions lending 70 percent of capital cost for five years at 12 percent annual interest rate. Additional 30 percent capital subsidy and 5 percent interest subsidy slightly increase the rural PV market potential to 89.6 percent of PV adopters. However, the subsidies are crucial for creating PV demands by urban households but the most effective policy for promoting PV to urban households is the net metering scheme. Several policy proposals are discussed in response to these findings.

Suggested Citation

  • M. Indra al Irsyad & Anthony Halog & Rabindra Nepal, 2019. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," CAMA Working Papers 2019-02, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2019-02
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2019-01/2_2019_irsyad_halog_nepal.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    3. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    4. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    5. Shukla, P. R., 1995. "Greenhouse gas models and abatement costs for developing nations : A critical assessment," Energy Policy, Elsevier, vol. 23(8), pages 677-687, August.
    6. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    7. Tourkolias, C. & Mirasgedis, S., 2011. "Quantification and monetization of employment benefits associated with renewable energy technologies in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2876-2886, August.
    8. Nepal, Rabindra, 2012. "Roles and potentials of renewable energy in less-developed economies: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2200-2206.
    9. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    10. Sovacool, Benjamin K., 2013. "A qualitative factor analysis of renewable energy and Sustainable Energy for All (SE4ALL) in the Asia-Pacific," Energy Policy, Elsevier, vol. 59(C), pages 393-403.
    11. de Koning, Arjan & Bruckner, Martin & Lutter, Stephan & Wood, Richard & Stadler, Konstantin & Tukker, Arnold, 2015. "Effect of aggregation and disaggregation on embodied material use of products in input–output analysis," Ecological Economics, Elsevier, vol. 116(C), pages 289-299.
    12. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Corrigendum to "Modelling energy systems for developing countries": [Energy Policy 35 (2007) 3473-3482]," Energy Policy, Elsevier, vol. 35(9), pages 4764-4765, September.
    13. Ramesh Bhatia, 1987. "Energy Demand Analysis in Developing Countries: A Review," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-34.
    14. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    15. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    16. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    17. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    18. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    19. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    20. Timilsina, Govinda R. & Shah, Kalim U., 2016. "Filling the gaps: Policy supports and interventions for scaling up renewable energy development in Small Island Developing States," Energy Policy, Elsevier, vol. 98(C), pages 653-662.
    21. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    22. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
    23. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    24. Alfaro, Jose F. & Miller, Shelie & Johnson, Jeremiah X. & Riolo, Rick R., 2017. "Improving rural electricity system planning: An agent-based model for stakeholder engagement and decision making," Energy Policy, Elsevier, vol. 101(C), pages 317-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    2. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    3. Victoria Kihlström & Jörgen Elbe, 2021. "Constructing Markets for Solar Energy—A Review of Literature about Market Barriers and Government Responses," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    4. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Xu, Deyi & Wang, Xiaolin, 2020. "Evaluation of Chinese natural gas investment along the Belt and Road Initiative using super slacks-based measurement of efficiency method," Resources Policy, Elsevier, vol. 67(C).
    6. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    7. Ye, Li & Dang, Yaoguo & Fang, Liping & Wang, Junjie, 2023. "A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system," Applied Energy, Elsevier, vol. 331(C).
    8. Liu, Jicheng & Lin, Xiangmin, 2019. "Empirical analysis and strategy suggestions on the value-added capacity of photovoltaic industry value chain in China," Energy, Elsevier, vol. 180(C), pages 356-366.
    9. Hidayatno, Akhmad & Setiawan, Andri D. & Wikananda Supartha, I Made & Moeis, Armand O. & Rahman, Irvanu & Widiono, Eddie, 2020. "Investigating policies on improving household rooftop photovoltaics adoption in Indonesia," Renewable Energy, Elsevier, vol. 156(C), pages 731-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    2. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    3. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    4. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).
    5. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    6. Mathy, Sandrine & Guivarch, Céline, 2010. "Climate policies in a second-best world--A case study on India," Energy Policy, Elsevier, vol. 38(3), pages 1519-1528, March.
    7. Baldini, Mattia & Klinge Jacobsen, Henrik, 2016. "Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences," MPRA Paper 102031, University Library of Munich, Germany.
    8. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    9. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    10. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    12. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    13. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series wp-2017-56, World Institute for Development Economic Research (UNU-WIDER).
    14. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    17. van Ruijven, Bas & Urban, Frauke & Benders, René M.J. & Moll, Henri C. & van der Sluijs, Jeroen P. & de Vries, Bert & van Vuuren, Detlef P., 2008. "Modeling Energy and Development: An Evaluation of Models and Concepts," World Development, Elsevier, vol. 36(12), pages 2801-2821, December.
    18. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    19. Fuchs, J.L. & Tesfamichael, M. & Clube, R. & Tomei, J., 2024. "How does energy modelling influence policymaking? Insights from low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    20. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    More about this item

    Keywords

    hybrid energy model; developing country; renewables policy; impact assessments; agent-based modelling; photovoltaic system;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2019-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.